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Abstract
When individuals of a species utilize an environment, they generate movement patterns at a variety of
spatial and temporal scales. Field observations coupled with location technologies (e.g. GPS tags) enable
the capture of detailed spatio-temporal data regarding these movement patterns. These patterns contain
information about species-specific preferences regarding individual decision-making, locational choices
and the characteristics of the habitat in which the animal resides. Spatial Data Mining approaches can be
used to extract repeated spatio-temporal patterns and additional habitat preferences hidden within large
spatially explicit movement datasets. We describe a method to determine the periodicity and directionality
in movement exhibited by a migratory bird species. Results using a High Arctic-nesting Svalbard Barnacle
Goose movement data yielded undetected patterns that were secondarily corroborated with expert field
knowledge. Individual revisits by the geese to specific locations in the breeding and wintering grounds of
Svalbard, Norway and Solway, Scotland, occurred with a periodicity of 334 days . Further, the orienta-
tion of this movement was detected to be mostly north-south. During long-range migration the geese use
the north-south oriented Norwegian islands as “stepping stones”, Short-range movement between
mudbank roosts to feeding fields in Solway also retained a north-south orientation.

1 Introduction

Animal movement is a fundamental activity for many species and establishing an understand-
ing of it is a necessary prerequisite to gaining knowledge about their ecology, life history and
behavior (Rubenstein and Hobson 2004; Nathan, 2008), or to simulate within agent- or
individual-based models (Tang and Bennett 2010). Further, studies of this nature serve a
variety of purposes, including understanding disease dynamics (Bonnell et al. 2010) and
factors impacting wildlife conservation (Chetkiewicz et al. 2006). The study of animal move-
ment has gained impetus in recent years with improvements in telemetric technologies which
enable higher accuracies when gathering location coordinates. Current GPS tags typically have
a spatial accuracy of 10 m in most ecological settings and the frequency of fixes can be altered
to suit the field site, study duration, and movement speeds of the organism in question
(Johnson and Ganskopp 2008). Current movement data (i.e. sequential locations of the subject
recorded on relatively short time scales) obtained through GPS tags are very data rich when
coupled with information about the landscape in which the animal moves. Analysis of these
data provides a means to understand animal preferences (e.g. preferred habitat, avoidance of
high risk predator or disease areas, territorial defence, social behavior).
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GIScience has borrowed from and expanded on Computational Science and Spatial
Ecology methods to analyze spatially-explicit movement data (Long and Nelson 2013). In this
article, we propose a methodology to extract periodic and directional behavior from spatially
explicit, time-stamped data to make inferences about animal movement. This information can
be used to quantify the spatio-temporal behavior patterns in relation to the environment in
which the movement is occurring. The information obtained becomes particularly important
when used to understand the factors that underlie the behavior of an individual of a migratory
species; GPS data from a single migratory Svalbard Barnacle Goose is used as a case study. In
this article, we are concerned with finding areas that are visited often and with a defined perio-
dicity by the Barnacle Goose. These areas assume special importance in the case of migratory
birds such as the Bernacle Goose. The great distance covered by animals such as the Bernacle
Goose and the remote locations they visit during migration makes it important to automate
the procedure of finding these locations from large datasets. Once the locations have been
identified, conservation efforts can be targeted at these locations.

Prior work on Barnacle Geese has shown that the geese migrate over a very narrow time
span and usually keep to well defined routes that differ slightly in spring and autumn (Owen
and Gullestad 1984; Griffin 2008). The birds do get frequently displaced if the weather during
migration is unfavourable. Studies have also indicated that routes can change because of the
competitive pressure in staging areas, as for example for the Russian Barnacle Goose popula-
tion where birds have begun to exhibit a later start to the spring migratory period and a pro-
nounced westward expansion of the breeding distribution (Eichhorn et al. 2006, 2009). It is
thought that the geese are skipping the western Baltic staging sites due to increased competi-
tion for food, but in doing so also shortening their migratory pathways by up to 700 km. The
skipping of spring staging areas in Norway has also been witnessed in the Svalbard Barnacle
Goose (Griffin 2008; see Table 10 in Griffin et al. 2011).

2 Related Work

Recent interest in movement data and “movement ecology” (Nathan 2008), particularly those
collected via GPS Telemetry, has given rise to a number of useful applications and numerous
studies have been undertaken that leverage the in-depth information provided by GPS tags.
Rodgers and Anson (1994) concluded that “GPS-based animal-location systems will set a new
standard for habitat-resource utilization studies of large animals over the next five to 10
years”. These studies range from estimating the home ranges of animals to understanding the
space use and movements of animals (Burdett et al. 2007). Furthermore, several researchers
have provided the means to analyze such telemetry data in order to understand the unknown
rules followed by the study animals (Merrill and Mech 2003; Ropert-Coudert and Wilson
2005). This is achieved by augmenting the inherent locational information provided by the
GPS with the spatial information handling capabilities of GIS, enabling more complex data
analysis.

From an ecological perspective, several applications have been coupled with spatial analy-
sis methods to provide a better understanding of animal behaviors (Patterson et al. 2009;
Bonnell et al. 2013). This has led to the development of software packages built to exploit
information from telemetry-based movement data. Though general purpose GIS software can
still be used for analyzing these data, special purpose open source software are available that
takes the environment in which a movement occurs into consideration. For example, the
Geospatial Modelling Environment (Beyer 2012) analyzes animal movements from an ecologi-
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cal perspective, and allows these movements to be decomposed into component localized
movements that can be correlated with environmental or habitat information and thus under-
stood in the context in which they are occurring. In recent years, systems like Env-DATA
(Dodge et al. 2013) have made it possible to augment entire GPS tracks with environmental
data. A myriad of environmental information is usually available from disparate sources and
in different formats. Env-DATA provides a convenient way to accumulate information from
numerous sources, convert them into a standard format and annotate the GPS track. The
richly annotated tracks opens up a new possibilities for researchers to explore and understand
how the surrounding environment affects animal movement.

It is important to note that there are some technological issues related to GPS that affects
their accuracy and thus utility. Kolodzinski and Resources (2010) studied the effects of home
range measurements due to different sampling rates and concluded that errors of between
30–50% are possible due to the inappropriate selection of sampling frequencies. A more gen-
eralized study that quantified the effect of sampling rates on estimates of distance travelled,
proximity and resource use was conducted by Johnson and Ganskopp (2008). Laube and
Purves (2011) point out that temporal error in the GPS signal may affect locational analysis
simply because of the continuous nature of the data collected. Hence, two temporally conse-
quent data points collected by GPS in the exact same location differ in their coordinate values
only because of this error. These studies are particularly important in the context of analyzing
the periodicity and direction of movement data. A misrepresentation in the data might result
in weak or inappropriate hypotheses being generated.

Further, analyzing the relative periodicity and directionality of movement is an important
and integral (albeit understudied) part of a broader framework of movement-related studies in
GIScience (Long and Nelson 2013). Specifically, pattern and cluster methods help identify
similarity of movement behavior or locate places of repeat interaction or use (Long et al.
2010). For example, the use of “episodal movements” is important to capture repeat patterns
in the behavior of a moving point object (Laube et al. 2007; Long et al. 2013). When inte-
grated with distance (e.g. as in the case of the Dynamic Interaction methodology), it provides
information about similarity of movement patterns for a pair of moving objects.

The huge amounts of data collected by GPS receivers are also a challenge to analyze
manually. As a result, researchers have come up with automated data mining techniques to
efficiently find interesting and useful patterns from the large datasets (Miller and Han 2009).
Large scale deployment of radio collars have made it possible to study aggregation of many
individuals or flocks (Gudmundsson and van Kreveld 2006; Nanni and Pedreschi 2006; Vieira
et al. 2009, Buchin et al. 2011). Trajectories of moving objects have also been mined to iden-
tify information about what locations will be visited in the future (Monreale et al. 2009; Ying
et al. 2011). Prediction of future visits are a particularly important aspect for commercial
applications. In our application scenario, the path followed by the Goose is usually quite pre-
dictable. However, extracting important locations and interesting patterns for directed conser-
vation efforts remains a challenge. In this regard, comprehensive frameworks that provide
generic models and approaches for geographic data discovery (Laube et al. 2005; Guo et al.
2005; Dodge et al. 2008) are useful in that they extract important information about the
moving objects and their environment. For example, automated detection of patterns from
GPS tracks provides a concise overview of the behavior and relative motion of moving objects.
A common approach to detecting behavior is to use pattern matching techniques, e.g. Laube
et al. (2005) use their framework “REMO” to detect relative motion patterns in objects.
Giannotti et al. (2007) also use the concept of pattern matching to extract trajectory patterns
from source trajectories. Finally, as an object moves through its interaction with the
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environment, it produces artifacts in its trajectories. The detection of such artifacts is
non-trivial and provide important information about object-environment interactions
(Orellana et al. 2010). In this article, we build upon the Periodica algorithm proposed by
Li et al. (2010) and test its utility for highlighting patterns of behavior in Svalbard Barnacle
Goose locational data. We emphasize its robustness as it can detect periodicity in a data set
and can deal with noisy and complicated cases. We also include directional information, and
suggest that periodicity and directionality can be combined to study habitat use by the geese.
The periodicity in the movement coupled with the directionality of movement provides impor-
tant information about the of the Geese and sheds light upon the environment that it interacts
with.

3 Methodology

We utilized elements of the Periodica algorithm (Li et al. 2010) to extract the periodic behavior
embedded in a movement dataset. This was an important first step towards understanding
how well the Periodica algorithm can be utilized to extract species-wide preferences.

3.1 Detecting Periodic Behaviors

The first part of the Periodica algorithm extracts the periodic patterns contained in the dataset
(Li et al. 2010) and was utilized for this article as well. The part of the algorithm used is enu-
merated below:

Periodica Algorithm

1. Detecting periods:
(a) Input: Movement sequence LOC = loc1, loc2, loc3, . . .
(b) Find the spots where the movements are concentrated using Kernel Density Esti-

mation (KDE) Methods. The hotspots are O = {o1, o2, o2, . . . , od}
(c) Convert LOC to a binary sequence according to whether a particular point falls

within oi or not. Note that the result of this step is a total of d binary sequences, 1
for each hotspot

(d) Discrete Fourier Transform (DFT) is performed on each of the sequences to find
out the periods of movements in the sequence.

(e) Any periodic behavior which is above a specific threshold is considered significant
and to correspond to real periods.

Next, Li et al. (2010) suggested the use of Kernel Density Estimate (KDE) to determine
the hotspots. However, KDE tends to have a smoothing effect and thus draws attention to
spatially larger hotspots. Moreover, the output of KDE is not characterized by statistical sig-
nificance measures such as z and p values. This implies that given the same output, applica-
tion of different thematic thresholds in KDE will produce different results. Thus, we
substitute KDE with Getis-Ord Gi* (Getis and Ord 1992) to come up with statistically sig-
nificant hotspots.

Getis-Ord Gi* compares the local sum with the sum of all features in order to determine
whether the local value is significantly different from the global one to be considered a
hotspot. When the local sum in a zone is very different from the expected local sum and the
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difference is too large to be accounted for by random chance, a statistically significant z-score
is produced (Mitchell 2005). Thus, the z-score based on the randomization hypothesis gives a
objective measure of clustering of points. When building automated systems for detection of
spatial patterns, the objective measures provided by the z-score remove subjectivity in identify-
ing the areas of high activity.

Fourier analysis is a mathematical technique for uniquely describing a time series in terms
of periodic constituents. Fourier Transforms are commonly used in Signal Processing to
decompose a signal to a finite composition of sinusoidal waves. By transforming the original
signal from the time domain to the frequency domain, it is easier to interpret the signal in
terms of the frequencies present in it. Discrete Fourier Transforms are used in the domain of
Digital Signal Processing to take into account the discrete nature of the data. Discrete Fourier
Transforms (DFT) can be calculated using Fast Fourier Transform (FFT) in O (nlogn) time and
hence used instead of DFT which is O (n2) (O being a measure of time complexity). Not only
does Fourier analysis give the components of a time series of data, it also gives special impor-
tance to the relative strength of its constituents. The output of the FFT can be plotted on
Periodograms to discern the frequencies that are important. In a Periodogram, the power of
each frequency is plotted against the frequencies themselves to understand the strength of a
repeating signal in the data at that frequency. Thus, visualizing Peridograms makes it easy to
find the frequencies of importance.

As pointed out by Li et al. (2010), trying to mine the periodic behavior of the animals
from the entire dataset at once is futile. Hence the concept of hotspots is used, as it filters out
the noise and converts the problem of period detection from a 2-dimensional space to a
1-dimensional (binary) space. Thus, the problem is greatly simplified, as instead of having to
deal with points located in a two-dimensional space, now just a sequence of 0’s and 1’s
capture the visits by an animal to the hotspots.

Once the hotspots have been found using Getis Ord Gi*, the location sequence can be
converted to a binary sequence such that:

x
if loc is within hotspot o

otherwisei
i j= {1 0

,
,

(1)

This binary sequence B = b1, b2, . . . , bn is then processed using DFT to yield the sequence of
complex numbers X1, X2, . . . , Xn. The power frequency Fk = Xk

2 is plotted to get the
periodogram which gives a visualization of the frequency components present. However, to
determine which frequencies are important, a threshold value needs to be determined. The
threshold value of 99% confidence is obtained by taking 100 random permutations of the
sequence B and then taking the 99th highest power from the highest power of each round as
the threshold value.

3.2 Extending Periodica

In Li et al. (2010), movement sequences are interpolated with a constant time gap to fill in any
missing data in a raw sequence. This is done to ensure calculation of periodicities from a con-
tinuous data source. However, we avoid using this step as interpolating the sequence has the
effect of increasing any periodic behavior that is inherent to the dataset. Hence, frequencies
that were not significant might also get amplified to an extent where they start becoming
important, leading to false positives.
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Further, the success of the Periodica algorithm lies in the fact that hotspots are used as the
basis of finding periodicities. Kernel Density Estimate (KDE) was used to find these hotspots
by Li et al. (2010). KDE is a popular statistical data smoothing technique used in GIS to
characterize important locations (Silverman 1986). However, application of KDE in the
context of animal tracking data has been highly criticized in the literature. One of the assump-
tions of KDE is that the points are generated independently whereas movement trajectories
consist of non-independent point (Downs 2010). KDE is also sensitive to the shape of the
point pattern of the tracking data (Downs and Horner 2008). Moreover, KDE is actually a
simple density calculation based on user inputs of search radius and a raster cell size; and the
hotspot outputs provided by KDE are generally visually more attractive. Kernel Estimates that
are generally used for calculation include Gaussian, Quartic and Triangular Kernels (Smith
and Bruce 2008). All the inputs required by KDE are highly subjective in nature and hence the
results obtained are also subjective. To sidestep the limitations of KDE, techniques based on
spatial statistical tests should be used for detecting hotspots. In this work, we use Getis-Ord
Gi* instead of KDE as an objective way of identifying the most visited locations or “hotspots”
for the Goose. Calculation of Getis-Ord Gi* statistics falls under the umbrella of inferential
spatial pattern analysis techniques grounded in probability theory. By repeatedly generating
random permutations of the data, the chances of getting a result as extreme as the one
observed is calculated (Mitchell 2005). Thus, the z-score obtained is based on the
randomization null hypothesis. If the z-score is large enough, that is, the chances of obtaining
the observed pattern is small by random chance, it can be objectively stated that a detected
hostspot is indeed statistically significant.

Getis-Ord Gi* works by looking at the value of each feature in the dataset in the context
of its neighbour’s values. The Hotspots reported by Getis-Ord Gi* have a p-value and z-value
associated with them, thus ensuring that the hotspots are statistically significant. To be
reported as a statistically significant hotspot it is not enough for a particular feature to have a
high value, it has to be surrounded by other features of high value as well. The local sum for a
feature and its neighbours is compared proportionally to the sum of all features; when the
local sum is very different from the expected local sum, and that difference is too large to be
the result of random chance, a statistically significant z-score results. Formally Getis-Ord Gi*
is defined as (Esri 2012):
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where xj = attribute value for feature j, wi,j = spatial weight between features i and j, n = total
number of features and
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The value G* returned by Equation (2) is the z-score itself indicating the statistical significance
of the hotspot found.
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3.3 Case Study: Svalbard Barnacle Geese

The data used here for the case study to infer the kinds of animal movement on which the
algorithm works well were obtained from the Movebank website (www.movebank.org).

The primary data set obtained from Movebank was that of “Barnacle goose (Branta
leucopsis) (Griffin.)”. Twenty-two birds were tracked using 30 g or 45 g solar GPS ARGOS
PTT tags (Microwave Telemetry Inc.) for approximately three years to understand their migra-
tory patterns. The data were collected mainly to establish full details of the international
migratory flyway, including the spring and autumn staging and breeding areas, as well as addi-
tional wintering sites.

The datasets used in this case study are based on location information collected at regular
intervals every one to two hours. However, due to lack of battery power for these solar tags on
some occasions, due to daylight and/or weather conditions, e.g. particularly during mid-
September and mid-winter, some location readings were missing from the data sequence, and
these gaps have been ignored. Provided that the animal is tracked over a long period of, in this
case, two years, it is suggested that a few missing data points are just minor noise in the data
set.

The migratory pattern of Svalbard Barnacle Geese is well known, and also quite evident
from Figure 1. It spends the summer months in the cold High Arctic regions of Svalbard, and
then migrates south for the winter to coastal Norway and then the Solway Firth, UK.

Figure 1 Return migratory GPS tracks of an individual Barnacle Goose from April 2007 to April 2009
(with ID 70563_1)

Analyzing Animal Movement 7

© 2014 John Wiley & Sons Ltd Transactions in GIS, 2014, ••(••)

522 D Sarkar, C A Chapman, L Griffin and R Sengupta

VC 2014 John Wiley & Sons Ltd Transactions in GIS, 2015, 19(4)



Location points for one individual (with ID 70563_1) were chosen from the dataset for
analysis as the case study animal. This is important as using too many individuals at a time
can lead to incomprehensible results. This is particularly important for datasets that have indi-
viduals from different herds or flocks.

Getis-Ord Gi* statistics were used to find the hotspots and the distance threshold was set
to 50 km. To ensure that the scale of analysis is relevant for hotspot detection Global Moran’s
I Statistics was calculated for a range of distance thresholds to determine the distance at which
spatial autocorrelation peaked. Plotting the results show that the autocorrelation peaks at
about 50 km (Figure 2). Only the locations with a z-score greater than two were retained as
hotspots to ensure 98% statistical confidence of the hotspots. Figures 3 shows the Hotspots
that were obtained.

On running Periodica on each of the hotspots, the periodograms corresponding to each of
them were obtained (Figures 4).

The Hotspots numbered 1 and 6 correspond to locations in the breeding grounds on Sval-
bard and wintering grounds on the Solway Firth, UK, respectively. The migration patterns in
the case of Barnacle Geese are well defined and correspond to a periodicity of one year. This is
evident from the periodograms of Figures 4a and f. The largest spike in the periodogram in
both cases corresponds to a periodicity of exactly 334 days. However, it is to be noted that
powers corresponding to several other frequencies are also above the threshold. This is prob-
ably because of the finite nature of the location sequence. Given a longer sequence these could
probably have been nullified and the power corresponding to a period of 334 days (indicating
a yearly migration pattern) would have been the only frequency above the threshold. Li et al.
(2010) proposed a method to eliminate some of the frequencies above the threshold value.
This method could also potentially eliminate unnecessary periods.

It is also worth noticing that in Hotspot locations 2, 3, 4 and 5, no dominant periodic
behaviors can be seen. A look at the attribute table also shows that these locations were only

Figure 2 Graphical illustration of variation of autocorrelation with distance (measured in meters) as
calculated by Global Moran’s I. The highest peak is highlighted
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visited in one year and several points were generated because the bird stayed there for a few
days, thus making the area qualify as a legitimate hotspot. However, looking at the
Periodograms we can see that several powers are larger than the threshold shown by the red
line. It is possible that the threshold value being generated is not high enough to eliminate the
unnecessary periods. It will be interesting to see whether with considerably larger sequences
these areas will still qualify as a hotspot, and if they do, whether the periods associated with
these hotspots will be eliminated. This is one proposed area of future work.

(a): Hotspot (sites in Van Mijenfjorden, Svalbard) 

(b): Hotspot 2 (Björnöya, Svalbard)

(c): Hotspot 3 (Ålesund, Norway) (d): Hotspot 4, 5 and 6 (Aberlady, Lindisfarne and the
Solway respectively)  

Hotspot 6

Hotspot 5

Hotspot 4

Figure 3 Hotspot locations with 98% confidence and above for Barnacle Goose 70563_1
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(a): Hotspot 1 (Van Mijenfjorden, Svalbard) 

(b): Hotspot 2 (Björnöya, Svalbard)

(c): Hotspot 3 (Ålesund, Norway)

Figure 4 Periodograms corresponding to the hotspots
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(e): Periodogram for Hotspot 5 (Lindisfarne)

(d): Hotspot 4 (Aberlady, Scotland)

(f): Periodogram for Hotspot 6 (Solway)

Figure 4 Continued

Analyzing Animal Movement 11

© 2014 John Wiley & Sons Ltd Transactions in GIS, 2014, ••(••)

526 D Sarkar, C A Chapman, L Griffin and R Sengupta

VC 2014 John Wiley & Sons Ltd Transactions in GIS, 2015, 19(4)



The location of the goose at different times of the year was also calculated and is shown in
Figure 5. The distribution in Figure 5 further highlights the migratory behavior of the goose
and explains the periodicity obtained from the periodograms of Hotspots 1 and 6.

3.4 Directionality

Rose diagrams have been used extensively to explain the frequency of lineations in a given ori-
entation, including marine ecological applications (Torres et al. 2013). This concept can be
used to understand the directionality in the movement patterns of the animal when they are
inside and outside the hotspots.

The rose diagram constructed for this purpose considers the angle between subsequent
locations recorded by a GPS tag. The directions are classified into 150 groups and then plotted
on the rose diagram. Altering the size of the classification bin has the effect of changing granu-
larity at which the information is represented in the rose plot. Smaller bin sizes capture slight
differences in movement direction whereas a larger bin size gives a broad overall picture.

The rose diagrams corresponding to each of the six hotspots for Barnacle Goose 70563_1
are shown in Figures 6, which highlights the fact that there is a strong directionality in the
movement of this goose inside the hotspots. Most of the hotspots in Figure 5 show strong

Figure 5 Location of the goose at different times of the year. The y axis shows the number of points
within the hotspot
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Northern movement. It is interesting to note that the strong North-South movement pattern of
the migratory route is mostly preserved in the local movements as well. In fact, if we exclude
the points falling inside any of the hotspots (which denotes local movement) and use only the
other points (denoting large-scale displacements) to make the rose diagram, then the strong
North-South directionality in the overall movement of the goose gets captured, as shown by
Figure 7. Thus, both local and large-scale displacements of the goose confirms earlier observa-
tions that geese usually keep to well defined routes that differ slightly in spring and autumn
unless displaced by bad weather (Owen and Gullestad 1984). And this north-south pattern of
movement holds true even for local movements.

(c): Hotspot 3 (Ålesund, Norway)

(b): Hotspot 2 (Björnöya, Svalbard)(a): Hotspot 1 (Ålesund, Norway)

(d): Hotspot 4 (Aberlady, Scotland)

Figure 6 Rose diagrams corresponding to the various hotspots
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The constrained North-South movement of the goose inside the hotspot as pointed out by
the algorithm is evidently counter intuitive. There should be no biological reason for a limited
movement within the hotspots as birds are simply feeding or moulting or roosting at those
locations. Hence the movements inside the hotspots should ideally be random, i.e. distributed
evenly in all compass directions. However, closer examination of the hotspot sheds light on the
North-South movement trend inside the hotspots. The hotspots corresponding to the Norwe-
gian islands and the one at Svalbard were used as “stepping stones” in the annual migration in

(f): Hotspot 6 (Solway)(e): Hotspot 5 (Lindisfarne)

Figure 6 Continued

Figure 7 Rose diagram of GPS points outside hotspots
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different years, i.e. the “stepping stone” at Norwegian Island was only used in 2008 and the
one at Svalbard in 2007. Hence, the progressive Northward movement in these locations
manifested itself as strong directional patterns in the rose diagrams corresponding to these
locations. Moreover, in the hotspot located at Solway, the movement from the mudbank to the
feeding site also happened to be oriented North-South. The chance location of these two sites
at such an orientation leads to the strong directionality present in the movement inside this
hotspot.

This validation further highlights the robustness of the technique. Data mining approaches
when used on large datasets may point out patterns that might prove interesting and useful on
further investigation (Clifton 2013). The constraint directionality of movement of the Goose
inside the hotspots in this case has proven interesting on further analysis.

Overall, this indicates an ability of the diagrams to capture and show directionality for
both local movements as well as large-scale displacements due to migration. This coupled
together with periodicity identifies sub-movements within large scale displacements of migra-
tory animals as a useful technique for analyzing animal movement information. Future work
will need to tie these analysis techniques to specific landscape characteristics, and to under-
stand the factors that introduce such periodicity and directionality in movements.

4 Conclusions

The framework presented in this article highlights the fact that there is strong periodicity and
directionality in animal movement data which can be captured by an automated processes. This
is particularly important as periodicity and directionality are two important drivers in the under-
standing of animal behavior movement patterns under the broad umbrella of movement ecology
(Nathan 2008). With the wide deployment of GPS tags on a variety of organisms, huge amounts
of data are captured every day, which makes it impossible to analyze them manually. Automated
frameworks like the one presented can help in distilling large datasets of GPS tracking data. It
can help identify frequently visited places, periodicities associated with these places (if any), and
the directionality present in the movement data at the macro as well as micro scale. Furthermore,
this method can be used to gain further insights even for hotspots which do not show significant
periods associated with them. These areas may perhaps indicate failed nesting sites to which the
bird no longer returns. Locating such sites by visual inspection of data can be a tedious task, and
automating the process helps in quickly isolating regions for further analysis. Similarly, hotspots
that have strong directionality associated with them can also be probed for landscape character-
istics that influence the movement. For, example the North-South movement associated with the
hotspots were not known apriori, these were detected through implementing the algorithm and
expert field knowledge corroborated the reasons for it. Detection of such hidden patterns
become more and more important with the increasing use of GPS tags. It is impossible to manu-
ally go through the huge datasets searching for interesting, unexpected patterns and automated
detection of interesting patterns becomes important.

The results of the framework can also help to succinctly summarize the movement of the
animals in terms of periodicity (Li et al. 2010) and directionality. For example, from the
example of Barnacle Goose 70563_1 we can conclude that:

1. There are two specific hotspots (regions), one in the UK and one in Svalbard which it visits
annually.

2. There is a tendency for north-south movement inside these hotspots.
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3. Overall, the migratory pattern of the Barnacle Goose has a strong North-South
directionality, which it maintains inside most of the hotspots due to the orientation of the
resources located there.

5 Discussion

Owen and Gullestad (1984) indicated that Barnacle Geese migrate over a short period of time
and tend to follow very well defined pathways, observations in Scotland in autumn indicating
two regular routes followed by the geese: one that was almost directly North to South through
Shetland/Orkney and into NE mainland Scotland, and the other from the East-North-East that
passes over Northern England, but noting that frequent deviations occurred because of cli-
matic conditions. To an extent this is repeated in reverse in the spring, although there are more
concentrated exit points from the North-East UK coast closer to the Solway, whereas in
autumn there are more diffuse arrival points into the UK because during the long sea crossing
from Norway, wind drift has an opportunity to displace birds north or south of where they
might be navigating for.

This was confirmed by the results obtained using the Periodica algorithm and the rose dia-
grams. A periodicity of 334 days indicates an annual revisit by an individual of the species,
with little time spent en route. Further, the directionality indicated that the individual trended
almost north-south, indicating that this member of the species followed the typical migration
corridor specified above (barring poor weather conditions). Interestingly, it exhibits this speci-
ficity in directionality even for local movements. Thus, the geese rarely deviate from their fixed
trajectories, except in the light of competitive pressures that lead to new migration strategies
(Eichhorn et al. 2006, 2009). The techniques presented above thus corroborate field surveys
and other understandings of the movement patterns of the Barnacle Geese used as a case study.
It also serves to highlight the potential for future non-subjective inspection and summary of
movement behavioral data for other species as well.

If these techniques are to be used for other species, one should note that the Periodica
Algorithm works best for animals that exhibit migratory behavior, because migratory patterns
have well defined hotspots which are repeatedly visited at regular time intervals. Moreover, the
large spatial separation between the hotspots makes them easy to find. Further, if the animal
has well defined periodic behaviors within a small (local) range, the scale of analysis needs to
be chosen carefully to extract the hotspots accurately. Moreover, it must be ensured that sup-
porting spatial data (e.g. habitat information) is also available at that scale to justify any
further analysis that may be performed.

It is also to be noted that the Periodica Algorithm works best when considerable amounts
of data are available for the individuals. Continuous GPS recording for a few consecutive years
is required to definitively identify the periods and eliminate irrelevant powers from the
periodogram. For example, consider the periodograms for hotspots numbered 2, 3, 4 and 5 for
the Barnacle Goose. A look at the attribute tables for the points falling inside these hotspots
reveal that these hotspots contain entries for a single year only. Thus, these areas should not
have shown any periodic behavior at all. But, despite using threshold generated from the data
itself, several powers associated with certain frequencies are above the threshold. This means
that using the proposed techniques on datasets of animals that do not show migratory patterns
and are of limited temporal duration (less than one year) may not adequately determine the
frequency of revisit and the directionality of movement.

The fact that Bernacle Goose migrate in a N-S direction was already well known.
However, finding important stopover locations remained a difficult task. Sites that have many
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points in them may not be the most important locations in the course of its migration. Many
sites are detected as ‘hotspots’ due to the large number of points that fall inside them.
However, a closer look reveals that this site may just have been visited during a single year and
the bird stayed there for a while generating a lot of location samples. The birds in the course
of their migration do not follow the exact same path every year. The locations which were
visited only once highlight such deviations from the usual route. On the other hand, the loca-
tions that are repeatedly visited by the goose are of particular importance from the perspective
of conservation. The advantage of knowing the directionality of movement within these loca-
tion gives ecologists a dashboard view of what the bird might have been doing there. The
strong N-S directionality inside hotspot in Solway on further investigation was revealed to be
primarily due to the orientation of the feeding site and mudbank in that location. Some
hotspots which are routinely revisited may have no dominant directionality, indicating that
these are locations where the birds usually stop over for foraging.

6 Future Work

We aim to create an analysis framework that can be used to mine behavioral rules which are
not specific to certain individuals or groups of animals. We want to extract rules from several
individuals from different groups residing in different areas. These rules can then be compared
against each other to extract the traits that hold for the entire species as a whole. Thus, we can
reject certain behavioral rules that a particular group has adapted to survive in its particular
environment and get only the preferences that are applicable to the species as a whole. This
principle has guided the work presented in this article. The main aim was to automate the
major part of the procedure as it needs to be reused and run several times to data mine multi-
ple GPS tracks.

We aim to determine the similarity between hotspots that have the same periodicity. The
hotspots of the same periodicity mined from different GPS tracks will be annotated with
important spatial characteristics, and then grouped together using similarity measures. The
problem of finding similarity in this situation is clearly one that cannot be solved by the Super-
vised Learning techniques of Machine Learning, due to the absence of the concept of training
sets. However, unsupervised learning techniques can be used to understand the similarity
between the hotspots. Several techniques of unsupervised learning may be tried on the datasets
to see which yield better results. Some of the techniques that can be used include k-means clus-
tering and Locality Sensitive Hashing (LSH). The k-means algorithm is one of the common
algorithms used to group similar items together. But the disadvantage is that the number of
groups required must be specified a priori. LSH is an algorithm for solving the near and
approximate Near Neighbor Search in high dimensional spaces (Andoni and Indyk 2006).
LSH closely models the clustering and k-nearest neighbour search. The main idea behind LSH
is to put items in buckets (hashing) so that the items that are similar to each other are put
together in the same bucket with a high probability. Given the high dimensionality of our
problem, it seems that LSH based approaches will be appropriate for the future work.
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