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Despite strong links between sociality and fitness that ultimately affect the

size of animal populations, the particular social and ecological factors that

lead to endangerment are not well understood. Here, we synthesize approxi-

mately 25 years of data and present new analyses that highlight dynamics in

forest composition, food availability, the nutritional quality of food, disease,

physiological stress and population size of endangered folivorous red colo-

bus monkeys (Procolobus rufomitratus). There is a decline in the quality of

leaves 15 and 30 years following two previous studies in an undisturbed

area of forest. The consumption of a low-quality diet in one month was

associated with higher glucocorticoid levels in the subsequent month and

stress levels in groups living in degraded forest fragments where diet was

poor was more than twice those in forest groups. In contrast, forest compo-

sition has changed and when red colobus food availability was weighted by

the protein-to-fibre ratio, which we have shown positively predicts folivore

biomass, there was an increase in the availability of high-quality trees.

Despite these changing social and ecological factors, the abundance of red

colobus has remained stable, possibly through a combination of increasing

group size and behavioural flexibility.
1. Introduction
Threatened animal species frequently share many common characteristics such

as decreasing habitat size and quality, poor nutrition, physiological stress, low

fecundity and long generation times. In addition, their small population sizes

put them at a high risk of declines owing to stochastic events, such as extreme

weather events or disease outbreaks [1,2]. For example, the African rinderpest

epidemic in the late 1880s that caused the devastating loss of cattle and wildlife

[3], and the distressing effects of Ebola on great ape populations [4–6] under-

score the need to investigate the impact of infectious diseases [7–9]. Also, the

loss of co-evolved endemic parasites in small and isolated threatened host

populations may make them susceptible to gaining novel infectious agents

that can cause declines [10].

Rates of discovery [11] and emergence of infectious diseases appear to be

accelerating [12–14], though some of this is likely based on increased sampling

effort and improved diagnostics techniques; also, some of these diseases may
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cause pathology, whereas others may not. For example, within

the past decade in one small area of Kibale National Park,

Uganda, our research group has discovered distinct simian

pegiviruses in three species of wild monkeys [15], a new SIV

lineage in red-tailed guenons (Cercopithecus ascanius) [16],

and novel delta-lenti-and spuma-retroviruses [17], just to

name a few. If diseases are emerging at a faster rate and/or

their role as stochastic events causing population declines are

more important than previously recognized, then the small

population sizes of endangered species may place them at

greater risk from disease outbreaks than previously thought.

While not all pathogens are necessarily lethal, some can

clearly devastate plant and animal populations [3,4,9]. For

example, a number of tree populations have been decimated

by emerging infections, including chestnut, elm, pine and oak

trees [18–21]. Fungal infections have been associated with the

loss or reduction in populations of amphibians, snakes, bees,

crayfish and bats [18,21,22]. Some Hawaiian bird populations

have been driven to extinction or near extinction by avian

malaria, and this pathogen is predicted to endanger

additional populations as a result of climate change [23,24].

An infectious cancer has caused the near extinction of the

Tasmanian devil (Sarcophilus harrisii) [22,25].

However, pathogens do not act in isolation in their impact

on populations of endangered species. There is ample evi-

dence that single-factor explanations for complex biological

phenomena, such as animal abundance, are uncommon.

Rather, studies have highlighted the importance of multi-

factorial explanations, with disease being one of the factors

interacting with other important variables. For example, high

stress levels or poor nutrition could lead to a greater suscepti-

bility to disease, which together could have a negative

influence on population size. Gulland [26] presented an excel-

lent experiment in wild sheep (Ovis aries), where she studied

the interacting effects of nutrition and parasites on survival.

Gulland found that an observed population crash coincided

with both malnourishment and high nematode loads. How-

ever, sheep mortality rates were reduced if sheep were left in

the field with low-quality diets but were treated for gastrointes-

tinal parasites, or if they had high parasite loads but were fed

high-quality diets. Thus, while the independent negative

effects of nutrition and disease were negligible, their simul-

taneous occurrence had an additive or synergistic effect that

influenced fitness and population abundance.

Physiological mechanisms, such as hormonal responses to

changing social and environmental conditions, may mediate

the impact of nutrition and disease on a population’s abun-

dance [27]. Although few field studies confirm a direct causal

relationship between activation of the hypothalamic–

pituitary–adrenal (HPA) axis (i.e. secretion of glucocorticoids,

such as cortisol) and fitness, chronically elevated glucocorticoid

levels may suppress reproduction, immune response and ulti-

mately reduce survival [28–34]. Pride [35] found that

glucocorticoid levels were positively associated with mortality

in female ring-tailed lemurs (Lemur catta), and similar results

have been reported in marine iguanas (Amblyrhynchus cristatus:
[36]). Pride [37] also demonstrated that lemurs with low food

intake had elevated glucocorticoid levels, highlighting nutri-

tional stress as a probable factor influencing survival as a

result of HPA axis activation. While these studies suggest that

glucocorticoid levels are useful as a proxy for individual or

population health, and are thus useful for conservation studies,

the relationship between glucocorticoids and fitness is not
always clear. Two recent reviews have found that variation in

glucocorticoid levels were positively, negatively, or non-signifi-

cantly related to fitness [38,39]. For example, Ebensperger et al.
[40] found no relationship between faecal cortisol and survival

of Octodon debus, a social rodent, but faecal cortisol was associ-

ated with reduced female reproduction, with females having

high cortisol levels being less likely to produce a second litter

in the same season. This study highlights that any relationship

that is found between glucocorticoid levels and fitness can be

influenced by the exact fitness estimate considered (e.g. survi-

val, seasonal versus lifetime reproductive output). Therefore,

glucocorticoid measurements cannot be assumed to be a

proxy of fitness for conservation purposes; rather, levels must

be related to relevant conservation variables and the measure

of fitness clearly defined.

Over the past approximately 25 years, various research

teams have examined factors influencing the abundance of

one endangered primate species, the red colobus monkey

(Procolobus rufomitratus), a gregarious, long-lived primate

with a largely folivorous diet. Research on the red colobus of

Uganda was initiated by Struhsaker (1970–1987) and further

intensive research has been led by Chapman since 1989 [41].

We examine and summarize changes in population size with

respect to changes in (i) forest composition, (ii) quality of

food items, (iii) parasite levels and (iv) glucocorticoids over

various time periods (figure 1), with the aim of investigating

what is driving population change in this species.
2. Methods and results
(a) Study site
This research was conducted in and around Kibale National

Park (hereafter Kibale), Uganda, a 795 km2 area composed

predominantly of mature moist semi-deciduous and ever-

green forest that also includes a variety of other habitats,

including grassland, woodland, lakes, wetland and coloniz-

ing forest [42,43]. Kibale receives an average of 1691 mm

rainfall annually (C. A. Chapman 1990–2013, unpublished

data) during two rainy seasons, with daily temperatures ran-

ging from 15.58C to 23.78C. Kibale is divided into forestry

compartments that were previously subjected to varying

degrees of logging and restoration efforts [44,45]. Research

focused on the old-growth forest compartment of K-30, but

we supplement this with data from other variably logged

park compartments within the park (i.e. K-14 and K-15)

and from nearby forest fragments outside the park.

(b) Red colobus diet and changes in forest composition
and food quantity

In 1989, 26 permanent vegetation plots (200 � 10 m;

22 analysed here, excluding four with equivocal logging his-

tory) were established and randomly distributed within an

existing trail system in all three forest compartments (K-30,

K-14, K-15). Following the initial survey in 1989, all plots

were resurveyed in May 2000, September–November 2006

and January 2013; during each survey, tree species was ident-

ified (less than 95% to species level) and the diameter at

breast height (DBH) was recorded for all tree stems with

DBH . 10 cm [44,46,47].

To determine the diet and general activity of red colobus,

animals were observed for 181 months between May 1994
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Figure 1. Theoretical relationships among examined factors predicted to influence population size of red colobus (Procolobus rufomitratus) in Kibale National Park,
Uganda. Ovals indicate long-term data, whereas rectangles indicate cross-sectional data. Solid lines indicate relationships that were examined, whereas dotted lines
represent theoretical relationships that were not examined. Positives (þ) and negatives ( – ) indicate predicted (not necessarily observed) relationships.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20140112

3

and November 2013, typically beginning at 08.00 and ending

at approximately 16.00. At 15-min intervals, instantaneous

behavioural samples were made of five different individuals

[47]. If the individual was feeding, the species and plant part

(e.g. fruit, young leaf, leaf petiole) were recorded, and these

data were used to determine which tree species constituted

important foods.

(i) Results
A linear-mixed effects model (fixed effect ¼ sampling period,

random effect ¼ vegetation plot identity) detected a signifi-

cant increase in the cumulative log10 DBH of all trees larger

than 10 cm in both the 2006 and 2013 tree surveys relative

to the initial 1989 survey (table 1a; [47]). In addition, when

only those species consumed regularly by red colobus were

included in the analysis, the linear-mixed effects model indi-

cated that the availability of red colobus food (i.e. cumulative

log10 DBH) was significantly higher in both 2006 and 2013

than in 1989 (table 1b; [47]).

(c) Food quality
Building on previous research by Milton [49] demonstrating

the importance of the protein-to-fibre ratio as a criterion for

leaf selection by folivorous primates, we have accumulated

data to examine if this factor predicts the biomass of arboreal

folivores [50]. High fibre content is often considered to deter

feeding on foods as it requires time-consuming fermentation

by symbiotic microbes [51]. Furthermore, because nitrogen is

a limiting nutrient in many food webs and is predominantly

found in protein, herbivores should compensate for this limit-

ation by choosing food with higher protein-to-fibre ratios

[52]. Milton’s seminal idea has since been applied at the

population level to red colobus populations and other species

[53–57]. The protein-to-fibre ratio as an index of dietary qual-

ity has generally been successfully applied to predict the
biomass of small-bodied folivorous monkeys at both local

[58,59] and regional scales [50,54,55,60,61], but some results

are mixed [62]. As previously reported, this dataset is able

to accurately (r2 ¼ 0.87, p , 0.001) predict biomass of folivor-

ous primates, supporting the idea that this ratio accurately

reflects food quality [50].

Based on published greenhouse experiments, increases in

temperature, rainfall and CO2 are all predicted to negatively

impact the nutritional quality of leaves (i.e. decrease protein

and increase fibre [63]); this is the direction in which climate

is changing in Kibale.
(i) Results
Red colobus food availability was weighted by the protein-to-

fibre ratio to obtain a measure of food abundance in relation

to food quality [44]. Mixed effect linear models indicated

there was no difference in the availability of high-quality

(i.e. high protein-to-fibre) young leaves (the primary food

part consumed by red colobus) in 2006, but an increase

was observed in 2013 relative to 1996, the first year nutrient

content was measured (table 1c). There was an increase in

the availability of lower quality (i.e. low protein-to-fibre)

mature leaves in 2006 and 2013 relative to the baseline year

(table 1d ).

All predictions based on greenhouse experiments were

supported and showed a decline in the quality of tree leaves

15 and 30 years after two previous studies in an undisturbed

area of Kibale [64]. With a sample of individuals of 10 tree

species, after 30 years, there was a mean increase in the fibre

content of mature leaves of 10%. In eight tree species, the

fibre content of young leaves increased 15%, and protein

decreased 6% after 15 years. A 31% decline in monkey abun-

dance was forecast when these nutrient values were placed

into the model predicting folivorous primate biomass [64];

however, these results did not take into account the increasing
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habitat-wide food availability found by Gogarten et al. [47]

over a different time period. Thus, the observed increase in

food availability and decrease in quality of food predict

contrary effects on abundance.

(d) Infectious disease
Freeland [65–68] sampled protozoan infections of Kibale pri-

mates between June 1974 and May 1975, providing valuable

baseline data. Following Freeland’s methods [65] as closely

as possible, between February 2008 and July 2010, Chapman

et al. resampled primates in the same population to determine

their protozoan infections. They collected faecal samples from

adults and juveniles in multiple groups (n ¼ 5–9) for each of

five species [69]. Samples were collected from groups inhab-

iting the same area in Kibale that were originally sampled.

Entamoeba histolytica and Entamoeba dispar have cysts that are

morphologically indistinguishable and it was only recently

that E. dispar was considered a distinct species [70]. While

E. histolytica is pathogenic and Entamoeba dispar is not, we

consider them as a complex (E. histolytica/dispar).

(i) Results
Samples collected by Freeland indicated that red colobus were

uninfected by protozoans in 1974–1975 [67]. This is in accord

with Kuhn [71], who did not find protzoans in the stomachs

of colobines in general. In marked contrast, the more recent

data indicate that red colobus groups have protozoan infec-

tions; Chilomastix mesnili, Dientamoeba fragilis, Endolimax nana,
Entamoeba coli, Entamoeba hartmanni, E. histolytica/dispar, Ioda-
moeba bütschlii and Isospora sp. were identified. Thus, species

richness of protozoan infections appears to have gone from

zero in 1974–1975 to eight in 2008–2010, and for many of

these protozoans, prevalence (i.e. proportion of infected

faecal samples) was high during this last sampling period.

However, this apparent change should be interpreted with

caution for a number of reasons. First, Freeland did not

report his sample size, making it difficult to evaluate how

robust the initial results are. Second, Gillespie et al. [72] ana-

lysed over 1600 red colobus faecal samples collected between

1997 and 2003 and found that individuals were infected with

up to five protozoan parasite species, but at a low prevalence

(a species maximum of 4.4% of the samples were infected

with given protozoan species). Thus, if Freeland’s sample

size was small, it is possible that he concluded the population

did not harbour protozoans when in fact it did (i.e. a false nega-

tive). Long-term monitoring to determine if there are cycles in

protozoan prevalence levels would help clarify if there has

been a change, as would monitoring other isolated red colobus

populations. However, without knowing the original sample

size examined by Freeland, we view it as premature to state

conclusively that a change in disease state has occurred.

There is recently an abundance of data on the viruses of

red colobus [17,73]. Unfortunately, no long-term comparative

data are available, so we cannot evaluate if there has been a

change in the nature of the viral infections in this population

of red colobus.

(e) Glucocorticoids
To examine the possible role of stress in determining red colo-

bus population numbers, Chapman et al. quantified patterns of

faecal glucocorticoid excretion in relation to food availability



Table 2. Characteristics of census routes used at Kibale National Park, Uganda and the results of the censuses conducted over four periods in old-growth forest
(statistics provided in the original studies) [47,85].

1970 – 1976 1980 – 1981 1996 – 1997 2005 – 2006

route length (km) 4.0 4.0 4.0 4.0

number of census walks 61 28 25 22

distance censused (km) 244 112 100 88

group density 5.36 5.46 5.50 4.21

mean group size — — 37.17 52.07

individual density — — 204 219

groups per kilometre walked 0.824 1.144 0.636 0.465

individuals per kilometre walked — — 24 24
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and quality, species richness/prevalence of some parasites

(nematodes and protozoa), and group size in one large group

(92 individuals; June 2003–April 2005) and one small group

of red colobus (36 individuals; March 2004–April 2005)

[74,75]. Poor nutrition and parasite infection were expected

to lead to elevated glucocorticoid levels, and a time lag was

expected before this became apparent. Larger group size was

also predicted to be associated with higher glucocorticoid

levels because of elevated within-group food competition.

Additionally, group size could influence parasitism via

increased encounter and transmission risk, or via increased

susceptibility to parasites resulting from nutritional stress [76].

Each group was observed for six days per month and 1036

faecal samples (n ¼ 759 from the large group; n ¼ 277 from the

small group) were collected. Faecal steroid levels can vary

along a number of dimensions, including time of day, age

and reproductive state. To reduce diurnal variation, sample

collection time was restricted to 08.00–13.00 [77]. Sample col-

lection was also limited to adult males and females with

nursing infant, as it was not possible to determine if females

were in the early stages of pregnancy and glucocorticoid

levels are known to vary over pregnancy in a number of species

[78,79]. Methods for sample processing and analyses can be

found elsewhere [74,75,80]. Glucocorticoid levels from the

two groups in Kibale were contrasted to levels from red

colobus inhabiting eight nearby forest fragments [74].
(i) Results
There was considerable variation in monthly diet quality, with

a fourfold difference between months with the highest and

lowest mean monthly protein-to-fibre ratios. Mean monthly

glucocorticoid level also varied (range: 72–133 ng g21, n ¼ 23

months; [75]). As predicted, consumption of a low-quality

diet in one month was associated with elevated glucocorticoid

levels in the subsequent month (r ¼ –0.415, p ¼ 0.027; [75]).

Furthermore, a high proportion of samples with multiple para-

site infections was associated with high glucocorticoid levels

(r ¼ 0.484, p ¼ 0.011). Moreover, mean monthly glucocorti-

coid levels for groups in forest fragments were more than

twice those in the large forest group (fragment groups:

267.2 ng g21; forest group: 104.4 ng g21), indicating much

higher stress levels in the fragments where high-quality foods

are limited. As predicted, there was a positive relationship

between group size and mean glucocorticoid levels (large

forest group: 99.8 ng g21; small forest group: 85.4 ng g21;
t ¼ –1.930, p ¼ 0.039) [75], but there was no relationship

between group size and the proportion of samples with

multiple parasite infections ( p . 0.10).
( f ) Primate density
Estimating primate population size presents many challenges

[81–84]. For this reason, our research group has used four

different methods to estimate the number of red colobus

in Kibale: (i) group density (groups km22), (ii) individual

density (individuals km22), (iii) group encounter rate (groups

observed per km of trail walked) and (iv) individual encounter

rate (groups observed per km of trail walked, multiplied by

group size determined after the census walk). See [85] for

description of these estimators. All methods are based on

line-transect census methodologies, considered the most

appropriate methods for estimating densities of large-bodied

diurnal species such as red colobus [86]. Primate censuses

were conducted in the old-growth K-30 forestry compartment

from August 1970 to October 1976 (by Struhsaker), and in the

three study forestry compartments (K-30, K-14, K-15) from Feb-

ruary 1980 to December 1981 (by Skorupa), from July 1996 to

June 1997 (by Chapman, Balcomb and field assistants), and

from July 2005 to June 2006 (by Chapman and field assistants).

Using these techniques, identical routes were walked typically

bi-weekly in each compartment (table 2). In total, 283 transects

covering 1104 km were walked (see [85] for detailed methods).

Group encounter rate does not take into account interob-

server variation in the ability to detect animals (although the

same observers conducted the last two censuses), differences

in group size over time, nor does it correct for visibility differ-

ences between areas or over time (e.g. owing to forest

regeneration), but it does avoid difficulties in assessing strip

width. Each method has its advantages and disadvantages,

but when they each indicate the same trend (e.g. a decline),

it suggests the trend is real.

Large, widely dispersed forest primate groups are extre-

mely difficult to accurately count and cannot be counted

without disrupting the census for an unsuitable period (i.e. a

group count takes up to a day to complete for some species).

To obtain accurate estimates of group size, three observers

selected an area of forest for eight days per month. To count

all individuals, a specific group was often followed for up to

10 h and observers waited until the group made a single-file

movement across a canopy opening, such as a treefall gap or

road, where it is easier to count individuals. To ensure accuracy,
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repeated counts were made of the same group. Group sizes

were quantified in two periods (July 1996—May 1998 and

July 2010—May 2011; n ¼ 268 group counts) at three nested

spatial scales: (i) unhabituated groups throughout the park

(broad scale), (ii) unhabituated and habituated groups in adja-

cent logged (K-14 and K-15) and old-growth (K-30) forest

(intermediate scale), and (iii) habituated groups occurring

only in old-growth forest (K-30, fine scale). Given that all

three nested scales document the same trends [47], we report

data only from the intermediate scale because these represent

the areas of intensive red colobus and tree data collection.

(i) Results
There was no indication of any change in red colobus popu-

lation size (table 2). While the number of groups (group

density and number of groups per km walked) decreased

over time, this decline is offset by increased group size, resulting

in a stable number of individuals [47].
20140112
3. Discussion
Understanding and interpreting the influence of multiple fac-

tors on biological phenomena is rarely straightforward. The

large body of research conducted at Kibale has found that

over the past several decades, the population size of red colo-

bus monkeys in Kibale has remained stable in spite of

changing ecological conditions. Thus, our examination of the

factors influencing red colobus population dynamics warrants

careful consideration given the potential ecological pressures

examined and conflicting predictions of how population size

might be impacted (figure 1).

On the one hand, our results indicate that habitat-wide red

colobus food availability and quality have recently increased,

despite a decline in the quality of specific tree species (i.e. the

study done in response to the greenhouse experiments),

suggesting that we might expect an increase in population

size. There was an increase in group size, possibly as a result

of increased food availability and decreased food competition

within groups; however, this has not resulted in a concomitant

increase in population size because it appears that the overall

number of groups has decreased, resulting in stable population

numbers. It is unclear why such a change in the structure of the

population might occur. Furthermore, short-term analyses

indicate that food availability and quality are negatively corre-

lated to faecal glucocorticoids [87], such that the absence of a

change in population size is likely not the result of increased

nutritional stress. However, the cross-sectional analyses indi-

cate that larger groups have higher stress levels, though it is

not known whether this is a result of nutritional and/or

social stress (i.e. increased opportunity for conflict ([75], but

see [88])).

Parasites may also have a negative impact on population

size, but it remains unclear if there were any real increases in

the red colobus protozoan community in the past three dec-

ades, nor if such changes would have a negative fitness

effect. While new viruses have been documented in our red

colobus study population, it is more likely that these viruses

represent new discoveries rather than new infections. None-

theless, it has been proposed that increased group size may

lead to increased disease transmission, because sociality can

increase parasite encounter probability [66,89]. Furthermore,

larger groups may be more susceptible to infection given
that potentially immunosuppressive glucocorticoid levels are

elevated compared with smaller groups [32]. However, the

short-term analysis of parasites does not support an effect

of group-size on parasitism (C. A. Chapman 2006–2014,

unpublished data). Larger groups were associated with fewer

parasites, perhaps an effect of behavioural mechanisms such

as cliques in social networks that reduce parasite transmission

in larger groups [90–93].

Habitat-wide food availability appears to have recently

increased, such that all else being equal, we would expect

stress levels to decline. Both these parameters are speculated

to result in population growth [28–32]. Although glucocorti-

coid levels are on average twice as high in forest fragments

compared with those in Kibale [74], birth and early infant

survival rates are comparable between fragments and the

national park [94]. Thus, food availability and stress do not

appear to influence red colobus population growth, at least

where these early life stages are concerned.

In spite of all of these changes, red colobus population

size has remained constant. This begs the questions: is

disease/parasitism offsetting the benefits of increased

habitat-wide food (quantity and quality as indicated by

the habitat-wide assessment), or is the population responding

in compensatory ways to the increased risk of disease, poss-

ibly via behavioural flexibility (e.g. avoidance of infected

individuals or increased clique formation within social net-

works) [90,92,93,95]? As the number of studies on different

populations of the same species accumulate, there is increas-

ing recognition that there can be considerable flexibility in

behaviour and demographic structure, which presumably

can influence the numeric response of a species to a given

environmental change [96–99]. If individuals are able to

respond to environmental change rapidly by altering their be-

haviour, the population may have a large scope to adapt to

environmental change without showing a change in size. It

seems likely that for long-lived species, such as primates, and

for species that have large geographical ranges within the

same breeding population (see evidence of this for red colobus

[100]), a premium would be placed on the ability to respond be-

haviourally to the nature of the food that is available or aspects

of disease risk (e.g. change group size, dispersal rates, inter-

group contact, movement patterns). Being able to respond

behaviourally to environmental change is more likely to be

found in species living in environments considered to be

in a non-equilibrium state, now accepted as a fundamental

property of many ecosystems [101–103].

Our summary of long-term research in and around Kibale

revealed changes in social factors (i.e. increase in group size

and corresponding changes in behaviour [47,104]), ecological

conditions (i.e. increases in food availability, declines in nutri-

tional quality per tree, but increases in the number of tree

species providing nutritional foods [47,64]), and an inter-

action between stress levels and the quality of the diet, but

it is premature to conclude whether there has been a

change in disease state. Whatever the explanation for the

stability of the red colobus population in spite of changes

in the environment, our review draws attention to the impor-

tance of continuous, long-term data collection on a variety of

parameters to start to unravel complex questions, such as the

determinants of animal population abundance.
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