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Abstract: We report the discovery and sequence-based molecular characterization of a novel
virus, lanama virus (LNMV), in blood samples obtained from two wild vervet monkeys
(Chlorocebus pygerythrus), sampled near Lake Nabugabo, Masaka District, Uganda. Sequencing
of the complete viral genomes and subsequent phylogenetic analysis identified LNMV as a distinct
member of species Kunsagivirus C, in the undercharacterized picornavirid genus Kunsagivirus.

Keywords: Chlorocebus pygerythrus; vervet; kunsagivirus; lanama virus; LNMV; nonhuman primate;
Picornavirales; Picornaviridae

1. Introduction

Picornavirales (Pisoniviricetes: Pisuviricota [1]) is the largest and most diverse viral order of
positive-sense RNA viruses. The picornaviral family Picornaviridae alone includes 63 genera for viruses
infecting hosts from all major vertebrate lineages. Among these viruses are significant pathogens,
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such as poliovirus, hepatitis A virus, and foot-and-mouth disease virus [2]. The diversity of viruses in
this clade is likely much higher than currently recognized [3–6].

In 2013, a novel picornavirus was discovered in feces of a wild European roller
(Coracias garrulus Linnaeus, 1758), a carnivorous migratory bird [7]. This virus is the founding
member of novel picornavirid genus Kunsagivirus (after Kunság, a historical region in Hungary
where the migratory bird was sampled) [7]. The virus was first named “greplavirus A” [7] and then
kunsagivirus A1, and it was assigned to species Kunsagivirus A [2]. Since then, two other kunsagiviruses
have been described. In 2017, “bat kunsagivirus” (now known as kunsagivirus B1) was identified
in feces of wild African straw-colored fruit bats (Eidolon helvum Kerr, 1792), sampled in Southwest
Cameroon [6]. In the same year, bakunsa virus (BKUV, also known as kunsagivirus C1) was discovered
by metagenomic sequencing in blood from a wild yellow baboon (Papio cynocephalus Linnaeus, 1766),
sampled in Tanzania in 1986 [8]. Today, these two viruses are classified into species Kunsagivirus B and
Kunsagivirus C, respectively [2]. Kunsagiviruses have yet to be isolated in culture, and the morphologies
of their virions remain unknown [2].

Here, we report the discovery and sequence-based molecular characterization of a novel
kunsagivirus, lanama virus (LNMV), in blood samples obtained from two wild vervet monkeys
(Chlorocebus pygerythrus F. Cuvier, 1821), sampled near Lake Nabugabo, Uganda.

2. Materials and Methods

One male and two female apparently healthy wild adult vervet monkeys were sampled for virus
discovery at Lake Nabugabo, a satellite lake of Lake Victoria, in Masaka District, Central Region,
Uganda. The sampled monkeys were members of a habituated group of vervet monkeys, studied since
May 2011 [9]. (The current composition of genus Chlorocebus is disputed, with monkeys found in this
region of Uganda being variously identified as vervet monkeys (C. pygerythrus) or tantalus monkeys
(C. tantalus Ogilby, 1841) [10,11]. In keeping with the current taxonomic standards in the literature,
we elected to retain the commonly used taxonomy and hence refer to the sample monkeys as vervet
monkeys.) The monkeys were anesthetized, and blood was sampled using previously described field
methods [12,13]. Blood was separated in the field by centrifugation (15 min, 3000× g) and stored in
liquid nitrogen until processing. RNA was extracted and converted to cDNA, which was sequenced
on an Illumina MiSeq instrument according to previously published methods [14]. Briefly, RNA was
extracted from blood plasma using the QIAamp Viral RNA Mini Kit (Qiagen, Hilden, Germany),
RNA was converted to cDNA using random hexamers and the Superscript IV system (Thermo Fisher,
Waltham, MA, USA), and libraries were prepared for sequencing on a MiSeq instrument (V2 chemistry,
300 cycle kit; Illumina, San Diego, CA, USA), using the Nextera XT DNA sample preparation kit
(Illumina, San Diego, CA, USA). Sequence reads were quality-trimmed (discarding sequences with
quality scores < q30 and lengths < 75 bases), and contiguous sequences (contigs) were assembled de
novo using CLC Genomics Workbench version 11.1 (CLC Bio, Aarhus, Denmark). Sequence reads
and assembled contigs were then compared at the nucleotide and deduced amino-acid sequence
level to sequences in GenBank using the BLASTn and BLASTx homology searching algorithms,
respectively [15].

Translated amino-acid sequences were aligned using Clustal W software [16] as implemented in
BioEdit 7.2.5 [17]. The evolutionary history of the newly discovered virus genomes was inferred by
using the maximum-likelihood method based on the Le and Gascuel (2008) amino-acid substitution
model [18]. Initial phylogenetic tree(s) for the heuristic search were obtained automatically by applying
Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model and
then selecting the topology with superior log likelihood value. A discrete Gamma distribution (+G)
was used to model evolutionary rate differences among sites (five categories (+G; parameter = 2.6468)).
The rate-variation model allowed for some sites (5.87%) to be evolutionarily invariable (+I). The analysis
involved 53 amino-acid sequences. All positions with less than 95% site coverage were eliminated,
i.e., fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position.
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A total of 565 positions were included in the final dataset. Evolutionary analyses were conducted
in MEGA7 [19].

Virus isolation was attempted in Vero E6 cells (American Type Culture Collection (ATCC),
Manassas, VA, USA; CRL-1586), seeded into wells of a 96-well plate according to ATCC culture
recommendations. An amount of 50 µL of primate plasma or mock plasma (medium containing 10%
heat-inactivated fetal bovine serum (Thermo Fisher Scientific, Waltham, MA, USA) was added to each
well and incubated for 1 h at 37 ◦C and 5% CO2). The initial inocula were recovered and sequentially
added in the same manner to human cervical carcinoma HeLa cells (ATCC CCL-2) and baby hamster
kidney BHK-21 cells (ATCC CCL-10). Next, 200 µL of prewarmed media was added to each well,
and cells were incubated and observed daily for cytopathic effect for 5 days. Media were removed from
cells, replaced with 200 µL per well of fresh media, and cells were lysed by three freeze/thaw rounds
at −80 ◦C. The resulting lysates were collected and pooled with the respective cell supernatants.
For Passage 2, 300 µL of pooled supernatants and lysates from each sample condition was added
to fresh cells in six-well plates under gentle agitation. Then, 2 mL of prewarmed media was added
to each well, and cells were incubated and observed daily for cytopathic effect. On Day 0, Day 3,
and Day 5 after inoculation, 200 µL of media was collected from each well and mixed with 600 µL
of TRIzol LS (Thermo Fisher Scientific) for virus inactivation and downstream sequencing analysis.
Removed volumes were replaced with prewarmed media.

3. Results

Deep sequencing yielded, after quality trimming, 4,203,737, 3,185,890, and 5,375,995 sequences of
155, 154, and 164 nucleotide average length for vervet monkeys 1, 2, and 3, respectively. Analysis of
these sequences revealed the presence of a novel picornavirid in the blood of the two female vervet
monkeys (vervet monkeys 2 and 3), whereas the male vervet monkey (vervet monkey 1) appeared to
be uninfected. There were also putative hits to varied retrovirids, small circular DNA viruses,
and hepadnavirids, but these were not investigated further due to ambiguous taxonomic assignments
and low depth of coverage. In silico analyses enabled the assembly of near-complete picornavirid
genomes (with approximately 390 nucleotides missing from the 5′ end of each genome due to depletion
of biological material) from both individuals (GenBank #MW218667 and #MW218668), with 337 and
134 reads from vervet monkeys 2 and 3, respectively, mapping to the picornavirid. Comparison of
the obtained genome sequences to published picornavirid genomes enabled the identification of
picornavirid-typical cleavage sites in the encoded polyprotein and, thus, the description of the genomic
organization (Figure 1). Sequence alignments (Figures S1 and S2) and phylogenetic analyses (Figure 2)
that comprise all currently known kunsagiviruses (A1, B1, and BKUV) indicated that the two viruses
from the two female vervet monkeys are closely related to each other (Figure 2) and represent isolates
of a novel kunsagivirus. We named the new virus lanama virus (LNMV) after the location where it
was discovered (Lake Nabugabo, Masaka District). Kunsagiviruses appear to encode two to four 2A
proteins [6–8]. The last encoded 2A protein in each virus possesses a typical 3C cleavage site (Q/G),
separating it from the 2B protein. All other 2A proteins are separated from adjacent proteins via a
ribosome-skipping mechanism involving an NPG↓P sequence motif [20]. Although the two lanama
virus genome sequences are most closely related to BKUV (Kunsagivirus C), they appear to lack one of the
2A proteins (possibly 2A2) (Figure S2). The established species demarcation criteria for Kunsagivirus [2]
and the VP1 p-dist values of >33% nucleotides and >21% amino acids suggest that LNMV is a distinct
member of species Kunsagivirus C, representing a distinct genotype (kunsagivirus C2). All virus
isolation attempts were unsuccessful.
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Figure 1. Lanama virus genome organization. (a) The cartoon, drawn to scale, outlines the genome
of lanama virus (vervet monkey 2), demonstrating the typical nonsegmented, linear, single-stranded,
positive-sense genome of picornavirids that encodes a single polyprotein, which is post-translationally
proteolytically cleaved into polyproteins P1–P3. Picornavirid-typical protein motifs are indicated by
vertical arrows. (b). The polyprotein is cleaved into structural and nonstructural proteins at conserved
cleavage sites as determined by alignment with the polyproteins of other kunsagiviruses (see Figure S1).
The cleaved residues are shown in upper case, whereas those preceding and following are shown in
lower case, except for the NPG↓P ribosome-skipping motif (shown in upper case).
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Figure 2. Phylogenetic analysis of kunsagiviruses. (a) Molecular phylogenetic analysis of 
Picornaviridae Supergroup 4 genera by the maximum-likelihood method. The tree with the highest log 
likelihood (−48,587.18) is shown. The percentage of trees in which the associated taxa cluster together 
is shown next to the branches. The tree is drawn to scale, with branch lengths measured in the number 
of substitutions per site. Each branch is labelled with the GenBank accession number associated with 
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Figure 2. Phylogenetic analysis of kunsagiviruses. (a) Molecular phylogenetic analysis of Picornaviridae
Supergroup 4 genera by the maximum-likelihood method. The tree with the highest log likelihood
(−48,587.18) is shown. The percentage of trees in which the associated taxa cluster together is shown
next to the branches. The tree is drawn to scale, with branch lengths measured in the number of
substitutions per site. Each branch is labelled with the GenBank accession number associated with
the analyzed sequence followed by the current virus name. (b) Nucleotide and amino-acid sequence
distances (p-dist) of kunsagivirus precursor proteins P1–P3 were determined using MEGA7 [19].

4. Discussion

Kunsagiviruses A1 and B1 were discovered in feces samples of birds and bats, respectively [6,7].
Thus, it is possible that both viruses infect hosts in the diet of these vertebrates rather than infecting the
vertebrates themselves. However, the discovery of BUKV and now LNMV in blood of apparently healthy
nonhuman primates indicates that kunsagiviruses indeed are vertebrate viruses and further supports the
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notion that kunsagiviruses are widely geographically distributed (in Africa and Europe) and have broad
host ranges (birds, bats, nonhuman primates, and likely other animals). Consequently, further studies
should be performed to better define kunsagivirus diversity, host range, and pathogenic potential.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/12/12/
1436/s1, Figure S1: Kunsagivirus polyprotein alignment using available complete kunsagivirus sequences.
Figure S2: Comparison of the four types of kunsagivirus 2A proteins using available complete
kunsagivirus sequences.
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