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Abstract

Objectives: Although fermented food use is ubiquitous in humans, the ecological and

evolutionary factors contributing to its emergence are unclear. Here we investigated

the ecological contexts surrounding the consumption of fruits in the late stages of

fermentation by wild primates to provide insight into its adaptive function. We

hypothesized that climate, socioecological traits, and habitat patch size would influ-

ence the occurrence of this behavior due to effects on the environmental prevalence

of late-stage fermented foods, the ability of primates to detect them, and potential

nutritional benefits.

Materials and methods: We compiled data from field studies lasting at least

9 months to describe the contexts in which primates were observed consuming fruits

in the late stages of fermentation. Using generalized linear mixed-effects models, we

assessed the effects of 18 predictor variables on the occurrence of fermented food

use in primates.

Results: Late-stage fermented foods were consumed by a wide taxonomic breadth of

primates. However, they generally made up 0.01%–3% of the annual diet and were

limited to a subset of fruit species, many of which are reported to have mechanical

and chemical defenses against herbivores when not fermented. Additionally, late-

stage fermented food consumption was best predicted by climate and habitat patch
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size. It was more likely to occur in larger habitat patches with lower annual mean rain-

fall and higher annual mean maximum temperatures.

Discussion: We posit that primates capitalize on the natural fermentation of some

fruits as part of a nutritional strategy to maximize periods of fruit exploitation and/or

access a wider range of plant species. We speculate that these factors contributed to

the evolutionary emergence of the human propensity for fermented foods.

K E YWORD S

climate, feeding ecology, fermentation, herbivore defense, human evolution

1 | INTRODUCTION

Food fermentation—the anaerobic microbial degradation of carbon

compounds into ethanol and/or lactic acid—is a central part of human

diet and culture (Tamang & Kailasapathy, 2010). Humans from many

cultures regularly incite or direct microbial fermentation of a wide

range of foods that include meat and dairy products, grains, fruits, and

vegetables (Battcock & Azam-Ali, 1998; Campbell-Platt, 1994;

Deshpande, 2000; Tamang et al., 2017). Such foods make up 20 to

40% of the global food supply (Campbell-Platt, 1994). Although not all

fermented foods contain ethanol, the majority of anthropological fer-

mented food research to date targets ethanol as an indicator of fer-

mentation (e.g., Dominy, 2015; Dudley, 2002; Garnier &

Valamoti, 2016; Hayden et al., 2013; Kuijt, 2009; Liu et al., 2018;

Milton, 2004; Ross et al., 2002; Smalley & Blake, 2003).

Directed fermentation by humans has early origins. There is

archaeological evidence that humans have engaged in directed fer-

mentation of fruits and grains and stored the resulting ethanol in large

quantities since �4300 B.C., although some suggest a date as early as

12,500 cal BP (Garnier & Valamoti, 2016; Hayden et al., 2013). Evolu-

tionary changes in human genes for processing ethanol and for inter-

acting with a major lineage of fermenting bacteria (Lactobacillales) are

compatible with an even earlier association with fermented foods,

dating back to the divergence of hominids from other primates at �10

Mya (Carrigan et al., 2015; Janiak et al., 2020; Peters et al., 2019).

Limited technology for processing and storing food at this time makes

it likely that our hominid ancestors relied more heavily on naturally

occurring fermented foods. However, some simple forms of directed

fermentation, such as burying food items or submerging them in water

(Speth, 2017), may have been possible.

Why humans have incorporated fermented products so promi-

nently into their diet across their evolutionary history is unclear. Fer-

mentation is an effective food preservative since it produces locally

high concentrations of ethanol and lactic acid that ultimately prevent

microbial growth and associated food spoilage (Boulton et al., 1999;

Pretorius, 2000; Skinner et al., 1980; Thomson et al., 2005). Addition-

ally, the physiological effects of consuming ethanol (i.e., intoxication)

are believed to have facilitated social gatherings and rituals (Liu

et al., 2018). Accordingly, the modern and ancient contexts in which

fermented food use has been documented often suggest central roles

of food preservation and socially motivated ethanol acquisition in

driving the ubiquity of human fermented food use (Dominy, 2015;

Dudley, 2002; Kuijt, 2009; Liu et al., 2018; Milton, 2004; Ross

et al., 2002; Smalley & Blake, 2003). However, given genetic evidence

that human adaptations for fermented food consumption emerged

before the technology associated with its directed production and

storage (Carrigan et al., 2015; Janiak et al., 2020; Peters et al., 2019),

fermented food consumption may have provided another selective

advantage earlier in our evolutionary history.

Given their high sugar content, fruits often ferment naturally

(Dominy, 2004; Duar et al., 2017; Dudley, 2002; Gorgus et al., 2016;

Martinson et al., 2012; Nyanga et al., 2007; Ruiz Rodriguez

et al., 2019; Weaver, 2016), making it likely that all frugivorous ani-

mals consume some minimum amount of fermented foods. However,

overripe fruits in the late stages of fermentation commonly remain in

food patches after other fruits have been depleted. As described

above, fermentation is distinct from rot or decay in that it involves

distinct microbes and precludes the production of most toxic micro-

bial byproducts (except ethanol). Therefore, it has been suggested that

fruits in the late stages of fermentation could have been a fallback

food for increasingly terrestrial hominids during periods of low food

availability in patchy woodland environments (Carrigan et al., 2015).

Foods in the late stages of fermentation could also convey nutri-

tional benefits that provide a selective advantage to consumers year-

round. Compared to unfermented foods, fermented foods have higher

caloric, free amino acid, and vitamin content (Gobbetti et al., 1994;

LeBlanc et al., 2013; Mitchell & Herlong, 1986; NRC, 1998; Tamang

et al., 2016). In the wild, many fermented foods contain embedded

insects, which provide an additional protein source (Barnett

et al., 2017; Braham, 2015; Hodge & Arthur, 1996; Xiaoming

et al., 2010). In addition, fermentation improves the digestibility of

food by breaking down resistant starch, soluble fiber, toxins, and sec-

ondary plant metabolites (Binita & Khetarpaul, 1997; Chaves-López

et al., 2014; Gupta et al., 2015; Rollan et al., 2019). For example, some

toxic foods, such as blowfish and cassava, can only be consumed after

fermentation (Akinrele, 1964; Anraku et al., 2013). Together these

properties not only directly affect consumer nutrient intake, but may

also result in a more favorable balance among the nutrients of food,

which in turn can play a critical role in food selection (Felton

et al., 2009). Therefore, foods in the late stages of fermentation could
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have represented a critical nutritional resource to hominids, particularly

as energetically expensive life-history traits such as long juvenile

periods, short interbirth intervals, and large brains emerged across evo-

lutionary time (Aiello & Key, 2002; Antón et al., 2014; Leonard &

Robertson, 1992, 1997). The consumption of other high-quality diet

items such as meat and cooked food has also been hypothesized to

have provided essential nutritional resources for the development and

maintenance of these traits in hominids (Aiello & Wells, 2002; DeCa-

sien et al., 2017; Wrangham, 2009; Wrangham & Conklin–

Brittain, 2003).

Fermented foods contain live microbes, substrates for microbial

metabolism, and microbial metabolites, which may affect consumer

health and fitness either directly or indirectly through impacts on the

microbiome (Jacobsen et al., 1999; Kim et al., 2016; Maldonado-Gómez

et al., 2016; Marco et al., 2017). Given the broad effects of the micro-

biome on host metabolism (Oliphant & Allen-Vercoe, 2019; Visconti

et al., 2019), immune function (Al Nabhani & Eberl, 2020), and neuroen-

docrine dynamics (Cryan et al., 2019; Sylvia & Demas, 2018), fermented

foods have the potential to affect consumer physiology in many ways.

Beyond intoxication caused by excessive consumption of fermented

foods with high ethanol content, none of these documented physiologi-

cal effects are negative. Therefore, fermented food consumption could

have provided a selective advantage to hominids in addition to the nutri-

tional advantages discussed above. Indeed, studies of human fermented

food use consistently demonstrate a range of improved health out-

comes (e.g., Bourrie et al., 2016; Burton et al., 2017; Yartey et al., 1995).

However, the wide variety of positive health effects that fermented

foods can produce via the microbiome make it difficult to predict spe-

cific scenarios in which these properties would be most evolutionarily

advantageous based on current knowledge.

Even in the context of nutrition, modern human technology, and

cultural practices complicate our ability to evaluate the potential fit-

ness benefits of human fermented food consumption. As a result,

comparative data from nonhuman primates (hereafter primates) are

essential for exploring the adaptive function of this behavior. By

determining how pervasive consumption of late-stage fermented

foods by wild primates is and the ecological contexts in which it

occurs, we can begin to more accurately assess the ecological and

evolutionary forces that drive it and contextualize it within human

evolutionary history. Nevertheless, few studies on this subject have

incorporated primate data.

A handful of comparative genetic analyses of physiological adap-

tations for fermented food consumption integrate data from multiple

primate species (Carrigan et al., 2015; Janiak et al., 2020; Peters

et al., 2019). Additionally, some behavioral research has investigated

primate ethanol affinity in response to the Drunken Monkey Hypoth-

esis (Dudley, 2002, 2004). This hypothesis posits that humans direct

the production of fermented foods and consume them as a result of

our affinity for ethanol, which stems from our evolutionary past as

frugivorous primates that used ethanol as an olfactory and/or gusta-

tory signal for energy-rich fruit (Dudley, 2002, 2004). Therefore, data

from other primates have been used to test the relationship between

frugivory and ethanol affinity. The results indicate that primates across

the Order prefer solutions of 2%–5% ethanol over water (Dausch

Ibañez et al., 2019; Gochman et al., 2016; Hockings et al., 2015; Kornet

et al., 1990; Mandillo et al., 1998). However, data from spider monkeys

(Ateles geoffroyi) indicate that sweet solutions are preferred over etha-

nol regardless of calorie content (Dausch Ibañez et al., 2019). Outside

of this context, fermented food consumption is rarely mentioned in

studies of primate feeding ecology, despite the fact that not all fer-

mented foods contain ethanol but all of them likely confer a range of

nutritional and health benefits to consumers.

As a first step to address this knowledge gap, we compiled qualita-

tive data describing overripe fruit consumption from primate field stud-

ies around the world to estimate the minimum prevalence of late-stage

fermented foods in wild primate diets, regardless of ethanol content, and

the ecological contexts in which the consumption of these foods occurs.

We hypothesized that local climate, primate socioecological traits, and

habitat patch size (Table 1) would predict the prevalence of primate con-

sumption of late-stage fermented foods. First, climate affects both the

rate of fermentation and the rate of ethanol evaporation (Isu &

Njoku, 1998), thereby influencing the local prevalence of late-stage fer-

mented foods and the probability that primates will detect them via

olfaction (Dominy, 2004; Melin et al., 2019; Nevo & Valenta, 2018).

Therefore, we predicted that mean minimum annual temperature, mean

maximum annual temperature, mean daily temperature, mean annual

rainfall, elevation, and latitude and longitude would be associated with

the occurrence of late-stage fermented food consumption in wild pri-

mates. Given that fruit ferments easily in nature (Dominy, 2004; Duar

et al., 2017; Dudley, 2002; Gorgus et al., 2016; Martinson et al., 2012;

Nyanga et al., 2007; Ruiz Rodriguez et al., 2019; Weaver, 2016), we

predicted that primate species and populations with high percentages of

fruit in their diets and low percentages of leaves and invertebrates would

be more likely to encounter and consume late-stage fermented food.

Since home range, social group size, body size, and encephalization quo-

tients are often correlated with diet (Clutton-Brock & Harvey, 1980;

Dunbar & Shultz, 2007, 2017; Kudo & Dunbar, 2001), we also expected

these variables to be associated with late-stage fermented food con-

sumption. Finally, due to the relationship between habitat patch size and

food availability more generally (Abbas et al., 2011; Fahrig, 2003;

Laurance et al., 2000), we predicted that habitat patch size would predict

the prevalence of late-stage fermented foods and their consumption.

2 | MATERIALS AND METHODS

2.1 | Behavioral data collection

KRA, YZ, and TME identified a group of researchers who had com-

pleted a wild primate field study of at least nine consecutive months

using multiple approaches. We searched two general online databases

(https://scholar.google.com, http://xueshu.baidu.com) using specific

keywords such as “primate” and “diet” combined with primate family

names one year at a time beginning with 2005. We also reviewed the

literature cited in multiple primate ecology books (Brady &

Carville, 2012; Campbell et al., 2011; Davies & Oates, 1994;
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Dudley, 2014; NRC, 2003; Rowe & Myers, 2016; Strier, 2016). Finally,

we flagged abstracts from the programs of primate conferences in

2018 and 2019, including the American Society of Primatologists and

the American Association of Physical Anthropologists.

KRA asked 151 researchers with relevant field studies and cur-

rent email contact information to report whether they had observed

their study subjects consuming fermented foods (i.e., plant foods

overripe or fermenting based on their color, physical traits, smell, or

other useful indicators). These food items could be found on the gro-

und, but this was not necessary for a food to be deemed “fermented.”
Many fruits consumed by primates are likely to have undergone some

degree of fermentation (Dominy, 2004), but only late stages of fer-

mentation with higher concentrations of ethanol and other microbial

products (Biale, 1954) are likely to be identified using the conservative

sensorial cues we employed here. For example, Astrocaryum

standleyanum unripe and ripe fruits are reported to have 0% and 0.6%

ethanol while fallen fruits have 0.9% ethanol and overripe fallen fruits

have 4.5% ethanol (Dudley, 2004). Therefore, it is likely that we are

excluding a substantial number of fermented foods from our analysis

(e.g., floral nectar and fruits with other levels of maturity; Aleksey

Maro, personal communication; Wiens et al., 2008; Weaver, 2016).

However, our approach still represents an important contribution to

this complex subject since foods that can be sensorially identified as

being in the late stages of fermentation are more likely to have physi-

ological effects on consumers as a result of higher concentrations of

microbes and/or microbial by-products (Tamang et al., 2016). System-

atic data describing chemical and microbial variables in wild fruits are

necessary to more accurately quantify fermentation stages in wild

food items and the probability of detection by foragers and observers.

Because these traits likely vary across plant species, primate species,

and environments, such an analysis is outside the scope of this study.

Nevertheless, given that the ethanol content of the small number of

ripe fruit species that have been measured in habitats occupied by

wild primates is reported to range from 0.01% to 1.1%

(Dominy, 2004; Dudley, 2004; Weaver, 2016), our conservative esti-

mate is that late-stage fermented fruits in our study have an ethanol

content >1%. No data exist to allow estimates of microbial biomass or

concentrations of non-ethanol microbial by-products.

We collated data for 40 species of primates inhabiting 50 research

sites (Table S1). While these data encompass a small percentage of all

extant primate species (7.9%, 40 of 504 recognized species; Estrada

et al., 2017), 11 of the 16 extant primate families were represented

across all continents inhabited by primates, and we included both

tropical and temperate environments. Therefore, we believe that our

database fairly represents the phylogenetic and geographic diversity

of the order Primates. Study duration ranged from 9 to 312 months

(median = 15 months), and we used data from multiple social groups

or communities of 18 species distributed across 13 sites. We included

data describing the location and length of the study, the elevation,

mean annual maximum and minimum temperatures, mean daily tem-

perature, and mean annual rainfall of the study site, the mean contri-

bution of fruits, leaves, and invertebrates to the diet of the study

species, the frequency with which any fermented foods were

consumed relative to total observation time, and any other relevant

details about the types of foods consumed or associated behavior,

such as seasonality or specific handling behaviors (Table S1).

2.2 | Physical and chemical traits of consumed
late-stage fermented foods

For all late-stage fermented foods consumed, we compiled data from

each study site or the literature describing the presence/absence of a

tough husk or skin, relative fiber content, and presence/absence of

secondary metabolites and their concentrations. We evaluated tough

husks qualitatively. A relative assessment of fiber content compared

to other fruits at the same site was possible for 35 fruits, and for

25 of these fruits, the nutritional data were available for that study

site specifically. Secondary metabolite data were more difficult to

compile. Quantitative data were available for 11 fruit species at three

sites. For the rest of the fruits, we searched the literature using the

fruit species name combined with terms such as “toxin” and “second-
ary metabolite.” Because data describing secondary metabolite con-

tent in fruits is sparse, in many cases we had to rely on literature

describing medicinal use that implied increased concentrations of

identified or unidentified secondary metabolites. Using this approach,

we were able to find evidence of the occurrence of secondary metab-

olites for 34 fruit species (Table 3).

2.3 | Data analysis

We assessed the influence of 18 predictor variables (Table 1) on the

occurrence of late-stage fermented food consumption via generalized lin-

ear mixed-effects models (GLMM; Zuur et al., 2009) with a binomial distri-

bution and logit link function using the function “lmer” of the R package

lme4 (Bates et al., 2015). We specified the occurrence of late-stage fer-

mented food consumption as a binary response variable, all the predictor

variables as fixed factors, and study site as a random factor to account for

data from repeated measures of the same species in different social

groups at the same site. In addition to socioecological, climate, and habitat

patch size variables, we included study length in all of our models to deter-

mine if shorter studies were biased against what we assumed would be a

relatively rare behavior (Souza-Alves et al., 2019). To avoid over-

parameterization and problems of convergence with the global model, we

did not consider variable interactions (see Grueber et al., 2011). We also

did not include variables describing primate taxonomy because limited

replication of species reduced the power of the analysis to assess the

impact of these variables.

Given differences in scale among the predictor variables, we stan-

dardized them using the “standardize” function of the package MuMIn

(Barton, 2020) as recommended by Grueber et al. (2011). We avoided

multicollinearity problems by only including those variables with Variance

Inflation Factors (VIF) <3 into the models (Zuur et al., 2009) using the

“vifstep” function of the package usdm (Naimi et al., 2014). The seven var-

iables with VIF >3 that we excluded from the global model were female
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body mass, male body mass, male relative encephalization quotient, per-

centage of leaves in the diet, percentage of invertebrates in the diet, mean

daily temperature, and elevation.

We selected models with an ΔAICc <2 as the most parsimonious

(Grueber et al., 2011). Given the occurrence of multiple equally parsimoni-

ous models, we also performed full-model averaging on all models with an

ΔAICc <2 to account for model uncertainty and to identify the best pre-

dictors of patterns of late-stage fermented food consumption in our data

set (Grueber et al., 2011). We used the “model.avg” function of the R

package MuMIn to identify the averaged model and the predictor weight

(
P

wi) of each variable. We determined the coefficient of determination

for each model with ΔAICc <2 using the MuMIn “r.squaredGLMM” func-
tion. We performed all statistical analyses in R 3.6.3 (R CoreTeam, 2020).

3 | RESULTS

3.1 | Occurrence of late-stage fermented food
consumption in wild primates

Out of 40 species of wild primates studied at 50 sites, 15 species

(37.5%) were reported to consume late-stage fermented foods at

23 sites in 12 countries across four continents (Figure 1). Overall, late-

stage fermented food consumption occurred infrequently (Table 2, S1).

We estimated that it constituted from 0.01% to 3% of the annual diet

in most groups, although there were seasonal differences. For example,

we found that late-stage fermented fruits could account for as much as

15% of the feeding records of Cebus imitator and Alouatta guariba clam-

itans during some seasons. For some primates, such as A. guariba clam-

itans, these seasons represented periods of low food availability (VBF

personal observation), whereas, for many others, such as C. imitator,

they did not (EKM personal observation). While we recorded late-stage

fermented food consumption in all our Pan paniscus and C. imitator

social groups (three and seven, respectively), not all populations or

social groups of the other species studied exhibited this behavior.

3.2 | Main sources of late-stage fermented foods
and behavioral strategies used

Late-stage fermented food consumption was limited to fruits

(Figure 2, Tables 2, 3, S1). The richness of late-stage fermented fruits

exploited ranged from one to nine fruit species for a given primate

species (Tables 2, 3, S1). Pan paniscus exhibited the highest richness

of late-stage fermented fruit species in the diet (N = 9 fruit species),

followed by Ateles geoffroyi (N = 8), Alouatta guariba clamitans (N = 7),

and Cebus imitator (N = 5; Table 2). The remaining primate species

exploited between one and three fruit species (Table 2).

At least 31 of the 44 fruit species that were consumed in the late

stages of fermentation have defenses in the form of difficult-to-

break tough husks/skins (N = 16) or secondary metabolites, such as

alkaloids, acetogens, saponins, and tannins (N = 25; Table 3). Almost

TABLE 1 Potential predictors of fermented food consumption analyzed in this study

Variable Description

Socioecological traits

1. Percent leaves in diet Proportion of immature and mature leaves in diet

2. Percent fruit in diet Proportion of immature and mature fruits in diet

3. Percent invertebrates in diet Proportion of insects and other invertebrates in diet

4. Home range Size of the home range for each study group (ha)

5. Group size Number of members of each study group including adults, subadults, juveniles, and infants

6. Male body mass Adult male body mass (kg) in each study species

7. Female body mass Adult female body mass (kg) in each study species

8. Female relative encephalization quotient Endocranial volume (cc) of the adult individuals divided by adult female body mass (kg)

9. Male relative encephalization quotient Endocranial volume (cc) of the adult individuals divided by adult male body mass (kg)

Climate

10. Latitude Latitude (decimal degrees) in which each study site is located

11. Longitude Longitude (decimal degrees) in which each study site is located

12. Mean annual rainfall Annual mean rainfall (mm) in each study site according to the local meteorological stations

13. Mean annual maximum temperature Annual mean maximum temperature (�C) recorded by the local meteorological stations

14. Mean annual minimum temperature Annual mean minimum temperature (�C) recorded by the local meteorological stations

15. Mean daily temperature Daily mean temperature (�C) recorded by the local meteorological stations

16. Elevation Representative elevation (m) of study site

Habitat quality

17. Habitat size Size of the habitat occupied by each study group (ha); proxy for fragmentation

Sampling Effort

18. Study length Number of months during which data were collected
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all fruits (95%) were consumed both ripe/unfermented and overripe/

fermented (Table 3). In some cases, late-stage fermented fruits were

only consumed when the patch was depleted of ripe fruits

(Table S1). We also reported cases in which very ripe or late-stage

fermented fruits appeared to be preferred over semi-ripe and unripe

fruits. Specifically, Cebus imitator at La Suerte, Costa Rica, was

observed frequently knocking ripe Dipteryx oleifera (Fabaceae) fruits

to the ground and returning up to 2 weeks later to consume them

(up to 15% of feeding time seasonally, EKM personal observation).

These fruits were never consumed unfermented by the capuchins.

Eulemur fulvus at Ampijiroa, Madagascar (up to 5% of feeding time

seasonally, PTR personal observation) and Ateles geoffroyi at Punta

Laguna, Mexico (up to 1% of feeding time seasonally, BPG personal

observation) were also reported to drop fruits to the ground and

return to feed on them later. However, unlike the capuchins, both

lemurs and spider monkeys consumed the target fruits in different

stages of ripening, although the lemurs appeared to prefer fallen

fruits over those on the trees since they would consume fallen fruits

first when both were available.

3.3 | Main primate predictors of late-stage
fermented fruit consumption

Only climate and habitat patch size were strong predictors of

late-stage fermented food consumption in wild primates. Other

socioecological traits did not contribute substantially to any of our

top-ranked models. We found six GLMMs equally parsimonious

(ΔAIC < 2) for explaining the observed patterns in late-stage fer-

mented food consumption (Table 4). These models included mean

maximum and minimum annual temperature, mean annual rainfall,

habitat patch size, mean minimum annual temperature, longitude,

home range size, and female relative encephalization quotient and

explained �99% of the observed variance (Table 4). However, only

mean annual maximum temperature, rainfall, and habitat patch size

were present in all six models. The model with the strongest empiri-

cal support (ΔAICc = 0.00) included these three variables and mean

minimum annual temperature (Table 4). The averaged model

explained 99% of the observed variance, and late-stage fermented

food consumption was only strongly negatively predicted by annual

mean rainfall and and positively predicted by mean annual maximum

temperature and habitat patch size (Table 4).

4 | DISCUSSION

We found that wild primates from all major evolutionary lineages con-

sume foods in the later stages of fermentation, although the behavior

is relatively infrequent and limited to only a few species of fruits at

the sites where we recorded it. Additionally, climatic and environmen-

tal variables generally predict the occurrence of late-stage fermented

food consumption better than socioecological variables. Specifically,

late-stage fermented food consumption is more common in hotter,

drier environments and larger, presumably less fragmented, habitats.

F IGURE 1 Wild primates consuming fermented fruits. (a) Chlorocebus djamdjamensis consuming L. abyssinica at Kokosa, Ethiopia; credit
Addisu Mekonnen (b) Cebus capucinus imitator consuming D. oleifera at La Suerte Biological Field Station, Costa Rica; credit: Liz Rasheed (c) Pan
paniscus consuming A. mannii at LuiKatole, Democratic Republic of Congo; credit Gottfried Hohmann (d) Ateles geoffroyi consuming M. zapota at
Punta Laguna, Mexico; credit Fabrizio Dell'Anna (e) Alouatta guariba clamitans consuming P. guajava at Parque S~ao Paulo, Brazil; credit Claudio
Godoy (f) Macaca assamensis consuming N. cadamba at Phu Khieo Wildlife Sanctuary, Thailand; credit Oliver Schülke (g) Hapalemur meridionalis
consuming Uapaca sp. at Mandena, Madagascar; credit Tim Eppley (h) Callithrix jacchus consuming P. pachycladus at Baracuhy Biological Field
Station, Brazil; credit: Filipa Abreu
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As fermentation is a continuous process, future studies should analyze

the chemical and microbial properties of the fermented fruits con-

sumed at different stages by the primates to improve the resolution

of these relationships. However, our findings provide an important

foundation for understanding the ecological and evolutionary forces

that drive fermented food consumption in primates and offer new

insights into the emergence of this behavior in humans.

4.1 | Occurrence of late-stage fermented food
consumption in wild primates

First, although reports of fermented food consumption are rare in

most studies of wild primate feeding ecology, this behavior is probably

pervasive across the Order. We observed late-stage fermented food

consumption in more than one-third of the primate species for which

we received data. However, given that our data were biased toward

late-stage fermentation and many fermented foods consumed by pri-

mates cannot be identified by researchers without chemical analyses,

it is likely that the prevalence of fermented food consumption among

wild primates is even higher. Fruits consumed by primates commonly

ferment naturally despite no clear signs to observers that fermenta-

tion has occurred (Dominy, 2004; Dudley, 2002; Aleksey Maro, per-

sonal communication; Weaver, 2016). Given that most primates, even

those considered leaf-eaters, rely heavily on fruit during at least part

of the year (Campbell et al., 2011; Rowe, 2018; Sussman, 1991), it is

likely that most primates regularly consume fermented foods. This

scenario becomes more probable when we consider the fact that

other foods such as nectar or gums may also often ferment despite

being difficult to observe (e.g., Wiens et al., 2008). Because the rela-

tive concentrations of ethanol and other microbial products at differ-

ent stages of fermentation—and the likelihood of perception by

foraging primates—are likely to vary by plant species, primate species,

and habitat, quantitative data describing these variables for a range of

food items are necessary to better define fermentation stages in wild

foods, and to test the extent to which primate ecology varies with

food fermentation stage. This area presents exciting opportunities for

future research.

Nevertheless, we do not expect that all primates consume fer-

mented fruits. For instance, primates of the subfamily Colobinae,

TABLE 2 Wild primate species reported to consume fermented fruits

Primate species Family Country Study sitea # groups Fruitsb %TFTc Locationd

Alouatta caraya Atelidae Brazil ECB 1 1 T

Alouatta guariba clamitans Atelidae Brazil CISM, RE, PSP, PEI 7 1–7 <0.5–2 T, G

Ateles geoffroyi Atelidae Mexico, Panama PL, RBMA, EPO, BCI 5 8–15 <0.5–1 T, G

Callithrix jacchus Callitrichidae Brazil BBFS 1 16,17 0.5 G

Cebus imitator Cebidae Costa Rica LSBFS, SSR 6 12, 18–21 <1 G

Macaca thibetana Cercopithecidae China Huangshan 1 2 G

Chlorocebus djamdjamensis Cercopithecidae Ethiopia Kokosa 1 22 <1 G

Macaca assamensis Cercopithecidae Thailand PKWS 1 23,24 0.01 G

Papio anubis Cercopithecidae Uganda KNP 1 25 <3 G

Pan troglodytes troglodytes Hominidae Republic of Congo Goualougo 1 26–28 G

Pan paniscus Hominidae DRC LuiKotale, Lomako 3 29–37 T

Gorilla gorilla Hominidae Republic of Congo Goualougo, Mondika 3 26,36,38 G

Pongo pygmaeus wurmbii Hominidae Indonesia Tuanan 1 39–41 <<0.01 T

Eulemur fulvus Lemuridae Madagascar Ampijoroa 1 42,43 5 G

Hapalemur meridionalis Lemuridae Madagascar Mandena 1 43,44 <0.01 T

Total = 15 6 12 23 34 44

aStudy sites: ECB = Estancia Casa Branca, CISM = Campo de Instruiç~ao de Santa Maria, RE = Reserva Econsciência, PSP = Parque S~ao Paulo, PEI = Parque

Estadual de Itapu~a, PL = Punta Laguna, RBMA = Reserva de la Biósfera Montes Azules, EPO = Ejido Zamora Pico de Oro, BCI = Barro Colorado Island,

BBFS = Baracuhy Biological Field Station, LSBFS = La Suerte Biological Field Station, SSR = Sector Santa Rosa, Area de Conservacion Guanacaste,

PKWS = Phu Khieo Wildlife Sanctuary, KNP = Kibale National Park.
bFruit species: 1 = Phytolacca dioica, 2 = Diospyros kaki, 3 = Citrus reticulata, 4 = Campomanesia xanthocarpa, 5 = Eugenia rostrifolia, 6 = Enterolobium

contortisiliquum, 7 = Psidium guajava, 8 = Manilkara zapota, 9 = Enterolobium cyclocarpum, 10 = Spondias pupurea, 11 = S. radlkoferi, 12 = S. mombin,

13 = Astrocaryum standleyanum, 14 = Quararibea asterolepis, 15 = Ampelocera hottlei, 16 = Annona muricata, 17 = Pilosocereus pachycladus,18 = Dipteryx

oleifera, 19 = Manilkara chicle, 20 = Stemmadenia obovata, 21 = Byrsonima crassifolia, 22 = Lagenaria abyssinica, 23 = Neolamarkia cadamba, 24 = Gmelina

arborea, 25 = Mimusops sp., 26 = Treculia Africana, 27 = Gambeya lacourtiana, 28 = Detarium macrocarpum, 29 = Parinari congensis, 30 = Gilbertiodendron

dewevrei, 31 = Mammea africana, 32 = Guibourtia demeusei, 33 = Dialium angolense, 34 = D. pachyphyllum, 35 = D. corbisieri, 36 = Anonidium mannii,

37 = Pouteria cf. malaccensis, 38 = Klainedoxa gabonensis, 39 = Diospyros pseudomalabarica, 40 = Ficus sundaica, 41 = Landolphia myrtifolia, 42 = Vangueria

madagascariensis, 43 = Uapaca sp., 44 = Syzygium emirnense.
cPercentage of total feeding time. No available information is indicated with .
dLocation where food consumed: T = tree, G = ground.

8 AMATO ET AL.



which are physically unable to consume large amounts of ripe fruits as

a result of their sacculated foregut (Davies & Oates, 1994), as well as

immature fruit specialists, such as the Neotropical Pitheciinae, were

not observed consuming fermented fruit (at least not clearly overripe

fruits) in any context in this study. Additionally, the physical nature of

some habitats can reduce access to fermented fruits. For example,

while not represented in our data set, swamps and riverbank forests

reduce opportunities for fruit fermentation on the ground, and fruits

in these habitats are often water-dispersed and rarely fleshy and eas-

ily fermentable (López, 2001).

4.2 | Ecological contexts associated with late-stage
fermented food consumption by wild primates

Despite how relatively common late-stage fermented fruit con-

sumption appears to be throughout the Order Primates, we found

that it is selectively employed in specific ecological contexts.

Although most primates include many fruit species in their diets, in

most cases only one or two fruit species were consumed in the late

stages of fermentation by a given primate population or social

group. In some cases, this pattern appeared to be a result of pri-

mates extending the utility of a fruit patch. For example, in the rare

instances when Pongo pygmaeus was observed consuming late-stage

fermented fruits, it was after the patch had been depleted by other

frugivores (ERV personal observation). Alternatively, some primates,

such as groups of Alouatta guariba clamitans in Santa Maria munici-

pality, Southern Brazil, appeared to rely on late-stage fermented

fruits during periods of low or altered food availability (VBF per-

sonal observation). Similarly, Ateles geoffroyi on Barro Colorado

Island, Panama utilized late-stage fermented Quararibea asterolepis

during a period of unusual fruiting patterns associated with the pre-

vious year's El Niño event, as did other frugivorous mammals and

birds (Campbell, 2000). These potential uses of late-stage fermented

foods as fallback foods are in line with previous hypotheses in other

contexts (Carrigan et al., 2015).

Other primates appeared to use fermentation to increase fruit

edibility. Many fruits contain secondary metabolites, and in some

cases they may reach sufficient levels to have meaningful physiologi-

cal effects if consumed in large quantities (Cipollini & Levey, 1997;

Janzen, 1983). At least two-thirds of the fruit species consumed in the

late stages of fermentation by wild primates in this study had mechan-

ical or chemical herbivore defenses when unfermented. For seven of

these species, primates were reported to reject fruits unless they were

very ripe or fermented. Pan troglodytes has been previously shown to

preferentially consume ripe fruits of plant species whose unripe fruits

have high levels of tannins since ripening reduces tannin content

(Wrangham & Waterman, 1983). Therefore, it is possible that fermen-

tation was used by some of our study subjects in a similar way to

break down plant herbivore defenses. For example, Dipteryx oleifera,

has a hard husk that can only be breached by Cebus imitator when fer-

mented (EKM personal observation).

F IGURE 2 Fruits consumed fermented by wild primates. (a) Lagenaria abyssinica, credit: Addisu Mekonnen (b) Stemmadenia obovata, credit:
Amanda Melin (c) Vangueria madagascariensis, credit: Tojotanjona Razanaparany (d) Spondias mombin, credit: Amanda Melin (e) Landolphia
myrtifolia, credit Tojotanjona Razanaparany (f) Diospoyros kaki, credit Bingua Sun
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Together, these patterns are compatible with the use of targeted

consumption of late-stage fermented fruits in multiple ways by pri-

mates as part of a broader nutritional strategy to increase food avail-

ability and expand their dietary niches. We found preliminary support

for this interpretation. As predicted, our models indicated that late-

stage fermented food consumption was associated with climate and

habitat patch size. In particular, late-stage fermented food consump-

tion was more common in drier environments with more extreme

mean annual maximum temperatures, as well as in larger habitat pat-

ches. Habitats with higher mean annual maximum temperatures and

lower annual rainfall are potentially more nutritionally stressful for pri-

mates due to both chronic and seasonal reductions in food availability,

as well as distinct plant growth strategies that result in increased

mechanical and/or chemical defenses against herbivory (Coley &

Barone, 1996; Onoda et al., 2011; Poorter & Kitajima, 2007; Zhao

et al., 2013). In such environments, a primate foraging strategy that

relied more heavily on late-stage fermented foods could well enhance

survival during lean periods by both extending the utility of depleted

food patches and increasing the digestibility of heavily defended plant

foods. We do not have quantitative data relating food availability or

plant-herbivore defenses to late-stage fermented food consumption

across sites, precluding our ability to rigorously test this hypothesis

here. However, future explorations of this relationship are warranted

by our findings.

Our results also indicate other potentially important mechanisms

driving patterns of primate late-stage fermented food consumption.

To some extent, it appears that late-stage fermented food consump-

tion occurs with more prevalence in habitats where primates are

more likely to come into contact with fruit in the late stages of fer-

mentation. Higher mean annual maximum temperatures are likely to

result in more rapid rates of fermentation and ethanol evaporation

(Isu & Njoku, 1998), increasing the local prevalence of late-stage fer-

mented foods and the probability that primates will detect them via

olfaction (Dominy, 2004; Melin et al., 2019; Nevo & Valenta, 2018).

Furthermore, larger, potentially less fragmented, habitats are often

associated with an increased abundance and diversity of fruiting

trees (Abbas et al., 2011; Fahrig, 2003; Laurance et al., 2000). There-

fore, there may be a higher probability that primates in these habitats

will encounter fermenting fruits. However, in our dataset, the effect

of habitat patch size appears to be driven by two particularly large

sites, Goualougo and Mondika in the Republic of Congo. As a result,

it remains unclear whether factors influencing the availability of late-

stage fermented foods to primates truly shape patterns of consump-

tion more globally.

TABLE 4 Best linear mixed models
(ΔAICc < 2) and averaged-model that
predict the consumption of fermented
fruits in 40 wild primate species

Predictor variablesa
Parametersb

Best supported models AICc ΔAICc wi R2c

1. habitat size+rainfall+tmax+tmin 84.5 0 0.11 1.00

2. habitat size+rainfall+tmax 84.5 0.02 0.10 0.99

3. habitat size+longitude+rainfall+tmax 85.5 0.96 0.07 0.99

4. habitat size+home range + rainfall+tmax 85.5 1.02 0.06 0.99

5. habitat size+home range + rainfall+tmax+tmin 86.5 1.96 0.04 0.99

6. female encephalization+habitat size+ rainfall+tmax 86.5 1.99 0.04 0.99

Averaged model (R2
c = 0.99) βi SE 95% CI

P
wi

Intercept −5.2 2.3 (−9.8, −0.6)

tmax 7.7 2.7 (2.3, 13.0) 1.00

rainfall −5.7 2.4 (−10.5, −0.9) 1.00

habitat size 4.9 2.0 (1.0, 8.8) 1.00

tmin −4.1 2.0 (−8.2, −0.1) 0.35

longitude 2.6 2.3 (−2.0, 7.2) 0.16

home range 1.4 1.1 (−0.8, 3.6) 0.25

female encephalization −1.1 2.4 (−5.9, 3.8) 0.09

aAbbreviations of predictor variables: tmax = mean maximum ambient temperature, tmin = mean

minimum ambient temperature, rainfall = mean annual rainfall.
bParameters shown are Akaike's Information Criterion (AICc) for small samples, difference in AICc

(ΔAICc), model probability Akaike weights (wi), Pseudo-R
2 (R2c) indicating the percentage of the variance

explained by the fixed and random factors, partial regression coefficients of the averaged-model (βi),

standard errors that incorporate model uncertainty (SE), 95% confidence intervals for the parameter

estimates, relative importance of each predictor variable (
P

wi). The degrees of freedom of each model

are equal to the number of variables in each model plus two.
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4.3 | Potential evolutionary benefits of late-stage
fermented food consumption

The aforementioned relationships open up new perspectives on the

emergence of food fermentation as an important component of the

human diet. If late-stage fermented food consumption is part of an

extant primate strategy for extending the time over which a particular

type of fruit can be fed on and/or increasing the nutritional accessibil-

ity of foods, particularly in nutritionally harsh environments or envi-

ronments with high levels of inter-specific feeding competition, it may

have served a similar role for our hominin ancestors. As hominins

diverged from other primates, they began to more consistently

occupy a more terrestrial niche (Sponheimer et al., 2013). It has been

suggested that fermented fruits may have emerged as a fallback food

in this context (Carrigan et al., 2015), and the patterns we observed in

extant nonhuman primates provide some support for this hypothesis.

Additionally, hominins including Paranthropus and Australopithecus are

believed to have incorporated substantial amounts of hard and abra-

sive food items, as well as underground plant storage organs, in their

diets (Dominy, 2012; Kay, 1985; Plummer, 2004; Teaford &

Ungar, 2000). Underground plant storage organs are mechanically

challenging, contain more starch and fiber compared to most ripe

fruits, and expose foragers to potentially high amounts of diverse sec-

ondary plant metabolites that are toxic or can interfere with digestion

(Buonocore & Silano, 1986; Dominy et al., 2008; Stahl et al., 1984;

Waterman, 1984). Fermentation could have reduced both the fiber

and toxin levels in these food items. In fact, fermentation is commonly

used to process tubers in modern human contexts (Akinrele, 1964;

Ray & Sivakumar, 2009). While the transition to more settled, agrarian

communities is often associated with the advent of human fermented

food production for food preservation and ritual (Kuijt, 2009; Liu

et al., 2018; Ross et al., 2002), the potential nutritional benefits of fer-

mentation should not be underestimated. We found evidence that

these benefits may be important drivers of late-stage fermented food

consumption across the Order Primates.

Other nutritional and non-nutritional factors that we could not

quantify should also be considered as proximate drivers of late-stage

fermented food consumption in primates. First, the nutritional bene-

fits of late-stage fermented fruits could be further improved by the

presence of insects. While generally composed of small individuals,

insect assemblages in fermenting fruit can be diverse and abundant

(Braham, 2015; Feinstein et al., 2007; Hodge & Arthur, 1996). Insects

can provide fat, protein, vitamins, and amino acids (Xiaoming

et al., 2010), and fruit infested with them are known to be selected by

some primate species in other contexts (Barnett et al., 2017). Addi-

tionally, fermentation is likely to alter food taste. Anecdotal researcher

taste tests in our study indicated positive changes in taste with fruit

fermentation. Fermentation is generally associated with sour or acid

tastes, and humans tend to prefer sweet–sour tastes (Breslin, 2013;

Katz, 2012). Little is known about sour taste receptors in primates and

other animals—or even sour taste preference (Montell, 2018;

Roper, 2007). However, it is likely that primates share an affinity for

sour taste with humans. Taste has not been systematically examined

in wild primate foods, but it will likely provide additional insight into

primate food choices, both fermented and unfermented.

Finally, fermented foods are likely to provide health benefits to

consumers as a result of probiotic and prebiotic properties (Bourrie

et al., 2016; Burton et al., 2017; Löwenadler & Linberg, 1994; Marco

et al., 2017; Summer et al., 2017; Tamang et al., 2016; Veiga

et al., 2014; Yartey et al., 1995). These properties are likely to be

stronger in late-stage fermented foods as a result of increased micro-

bial activity, which may explain why these foods are targeted by some

primates. Currently, without chemical and microbial data from primate

foods as well as physiological and microbial data from primates, it is

impossible to assess these potential relationships. However, rapidly

emerging evidence of the importance of microbes for primate ecology

and evolution (Amato, 2016; Amato et al., 2019; Davenport

et al., 2017; Dunn et al., 2020; Gaulke et al., 2018) suggests that these

interactions should not be overlooked.

5 | CONCLUSION

We find that late-stage fermented fruits are consumed by a variety

of nonhuman primates globally. This behavior generally targets a spe-

cific subset of fruit species, some of which contain herbivore

defenses that are likely degraded by bacterial fermentation. It also

occurs more often in hotter, drier environments, and in larger habitat

patches. As a result, we suggest that primate late-stage fermented

food consumption may be part of a nutritional strategy that increases

food availability by increasing the duration across which a particular

fruit patch can be used, and expands dietary niche space by

degrading some toxins in ripe fruit and providing easily accessible

nutrients. It is possible that the human propensity for fermented

food consumption is rooted in this ancestral primate strategy, which

was favored during the course of human evolution by periods of

nutritional stress caused by climate change events and migration to

unknown or unfavorable landscapes. Future studies should pair sys-

tematic assessments of spatial and temporal patterns of wild primate

fermented food consumption with nutritional and microbial analyses

of fermented and unfermented food items to further investigate

these relationships.
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