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Kanyawara Virus: A Novel 
Rhabdovirus Infecting Newly 
Discovered Nycteribiid Bat Flies 
Infesting Previously Unknown 
Pteropodid Bats in Uganda
Tony L. Goldberg  1,2,3, Andrew J. Bennett1, Robert Kityo3, Jens H. Kuhn4 & Colin A. Chapman3,5

Bats are natural reservoir hosts of highly virulent pathogens such as Marburg virus, Nipah virus, and 
SARS coronavirus. However, little is known about the role of bat ectoparasites in transmitting and 
maintaining such viruses. The intricate relationship between bats and their ectoparasites suggests 
that ectoparasites might serve as viral vectors, but evidence to date is scant. Bat flies, in particular, are 
highly specialized obligate hematophagous ectoparasites that incidentally bite humans. Using next-
generation sequencing, we discovered a novel ledantevirus (mononegaviral family Rhabdoviridae, 
genus Ledantevirus) in nycteribiid bat flies infesting pteropodid bats in western Uganda. Mitochondrial 
DNA analyses revealed that both the bat flies and their bat hosts belong to putative new species. The 
coding-complete genome of the new virus, named Kanyawara virus (KYAV), is only distantly related 
to that of its closest known relative, Mount Elgon bat virus, and was found at high titers in bat flies but 
not in blood or on mucosal surfaces of host bats. Viral genome analysis indicates unusually low CpG 
dinucleotide depletion in KYAV compared to other ledanteviruses and rhabdovirus groups, with KYAV 
displaying values similar to rhabdoviruses of arthropods. Our findings highlight the possibility of a yet-
to-be-discovered diversity of potentially pathogenic viruses in bat ectoparasites.

Bats (order Chiroptera) represent the second largest order of mammals after rodents (order Rodentia). Classically, 
bats are divided into two suborders: megabats (Megachiroptera) and microbats (Microchiroptera). Megabats, 
also referred to as fruit bats, are assigned to a single family, Pteropidae, whereas microbats are taxonomically 
more diverse1. Both megabats and microbats host numerous, taxonomically diverse viruses. Examples of 
megabat-borne viruses that are highly virulent for humans are Marburg virus and Nipah virus. Severe acute 
respiratory syndrome coronavirus is an infamous example of a microbat-transmitted human pathogen1. 
Consequently, characterization of bats, their viromes, and cross-species transmission of bat-borne viruses have 
become research priorities.

Much less effort has thus far been invested in understanding the role of bat ectoparasites in maintaining 
viruses in bat populations or potentially transmitting them to humans or mammals of other species. The high 
degree of specialization and diversity of certain bat ectoparasites suggests that they could, in fact, be reservoirs 
for certain viruses, maintaining them in their bat hosts. Alternatively, bats could be refractory to infection with 
ectoparasite viruses, but nevertheless these viruses could be infectious or even pathogenic for other mammals, 
including humans, and be transmitted through incidental bat ectoparasite bites.

Bat flies are eyeless, wingless, hematophagous dipteran insects (Brachycera: Muscomorpha: Hippoboscoidea) 
that are obligate bat ectoparasites with off-host breeding life stages. They are assigned to two families, the 
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monophyletic Nycteribiidae and the probably paraphyletic Streblidae, and they infest bats throughout the Old and 
New Worlds2, 3. Bat flies of each family have evolved exquisite morphological and behavioral adaptations to life on 
bats, reflecting a long history of co-evolution2. Bat flies host a diverse community of bacteria, including bartonel-
lae, some of which are zoonotic4, 5. Bat flies also vector hemosporidian parasites (Plasmodiidae: Polychromophilus 
melaniferus) that cause “bat malaria”6. On the other hand, evidence for a role of bat flies as reservoirs or vectors 
of viruses is scant. Only two viruses have been unambiguously identified in bat flies: the putative orthoreovirus 
Mahlapitsi virus and the putative orthobunyavirus Wolkberg virus, which were both found in the nycteribiid 
Eucampsipoda africana on pteropodid Egyptian rousettes (Rousettus aegyptiacus)7, 8. In addition, rhabdovirus 
RNA-like sequences were detected in nycteribiids and bats in Spain, but the sequences were too short (108 nt) to 
unambiguously substantiate virus infection9.

Here, we report the discovery and coding-complete genome sequence of a novel rhabdovirus, Kanyawara 
virus (KYAV), in a previously unknown nycteribiid bat fly collected from an unclassified megabat in western 
Uganda. Phylogenetic and genomic analyses of KYAV and its relatives offer new insights into the evolutionary and 
ecological associations of rhabdoviruses with both bats and arthropods.

Results
Bat flies were found on six of nine pteropodid bats trapped at the edge of Kibale National Park, western Uganda, in 
2010. Next-generation sequencing (NGS) of bat flies yielded 0.11 × 106 to 1.59 × 106 reads per sample. After qual-
ity trimming, rhabdovirus-like sequences were detected in five bat flies, each from a different bat. These sequences 
mapped with low similarity to conserved regions of rhabdovirus genomes (order Mononegavirales, family 
Rhabdoviridae). De novo assembly yielded a contiguous sequence of 10,843 nt in one bat fly sample (MPK004), 
with five open reading frames matching the canonical rhabdovirus genome organization (Fig. 1)10. Subsequent 
analysis of bat fly reads mapped 448 to 206,726 individual reads to this sequence, yielding coding-complete 
genomes in three other bat fly samples. Rhabdovirus coding genome sequences from bat flies of individual bats 
were 99.9% and 99.8% similar at the nucleotide and deduced amino acid levels, respectively. Viral read frequen-
cies in the five positive bat fly samples ranged from 8,611 to 262,258 per million, with coverage ranging from 
5-fold to 3,632-fold.

Sequencing of sera from the bats on which the bat flies were found yielded 1.17 × 106 to 2.97 × 106 reads per 
sample, but no reads mapped to the detected rhabdovirus genome. Application of this method at this sequencing 
depth is approximately as sensitive as real-time quantitative PCR11; therefore, bat sera could confidently be clas-
sified as negative for the virus. For further confirmation, however, we also tested all bat sera by PCR, and results 
were congruent with NGS results (i.e., all bat sera tested negative for the new rhabdovirus). Oral and urogenital 
swab samples from all bats also tested negative for the new rhabdovirus by PCR.

Phylogenetic analysis (Fig. 2A; Supplementary Table S1) indicates the rhabdovirus to be a new member of the 
recently established genus Ledantevirus12, 13. We named this virus Kanyawara virus (KYAV) after the village clos-
est to the roost from which the bats were sampled. Sequence similarity between KYAV and other ledanteviruses 
based on concatenated, codon-based alignments of the canonical N, P, G, M, and L genes ranged from 62.4% 
(Mount Elgon bat virus) to 47.6% (Y ngjiā tick virus 2) at the nucleotide level and from 59.3% (Mount Elgon bat 
virus) to 38.7% (Kern Canyon virus) at the deduced amino acid level, respectively. KYAV fulfills four of the five 
criteria of the International Committee on Taxonomy of Viruses (ICTV) Rhabdoviridae Study Group for classifi-
cation in the genus Ledantevirus: A) the deduced amino acid sequence of the KYAV RNA-dependent RNA poly-
merase (L) diverges >7% from that of other ledanteviruses (KYAV:Mount Elgon bat virus = 35.2%); B) the 
deduced amino acid sequence of the KYAV glycoprotein (G) diverges 15% from that of other ledanteviruses 
(KYAV:Mount Elgon bat virus = 49.0%); C) KYAV has the same genome organization as other ledanteviruses 
(Fig. 1); and E) KYAV occupies a different ecological niche than other ledanteviruses. Criterium D (“can be dis-
tinguished in serological tests”) could not be evaluated due to the absence of a replicating KYAV isolate, but the 
high divergence of the sequence of KYAV G, the only ledantevirion surface protein, strongly suggests that KYAV 
is also serologically distinct14.

Figure 1. Comparison of the genome organization of Kanyawara virus (KYAV) to that of other members of 
the mononegaviral family Rhabdoviridae. Arrows signify open reading frames. Letters indicate the canonical 
rhabdovirus nucleoprotein (N), phosphoprotein (P), matrix (M), glycoprotein (G) and polymerase (L) genes 
and genus-specific open reading frames (U1, X).
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An analysis of the CpG content of the KYAV genome and related rhabdoviruses revealed significant variation 
(analysis of variance [ANOVA] F = 11.443; 6 degrees of freedom; P <0.0001), with low relative CpG depletion in 
sigmaviruses, vesiculoviruses, and the Sandjimba virus group accounting for this trend (Holm T-statistic values 
ranging from 3.77 to 6.86; P values all <0.01; Supplementary Table S2). Figure 3 shows average CpG depletion 
by virus group and gene. CpG depletion was least pronounced for the insect-only sigmaviruses15, 16, but more 
pronounced in the mammal-specific lyssaviruses17, 18. These CpG variation patterns were generally consistent 
across the five canonical rhabdovirus genes N, P, G, M, and L within each virus group (Fig. 3). Within the genus 
Ledantevirus, KYAV and Oita virus have the lowest CpG depletion values (KYAV: 0.69; Oita virus: 0.72); these 
values were comparable to values for the insect-specific sigmaviruses (Supplementary Table S2). Variation in CpG 
frequency also differed significantly among rhabdovirus groups (Levine’s W statistic = 3.29; 6 degrees of freedom; 
P = 0.008). The coefficient of variation in CpG depletion was lowest for sigmaviruses and lyssaviruses and notably 
higher for the other virus groups (Fig. 3).

Phylogenetic analysis of mitochondrial DNA sequences from the collected bat flies revealed them to be mem-
bers of the nycteribiid subfamily Cyclopodiinae, representing a putative new species of the genus Dipseliopoda. 
These sequences are approximately as divergent from bat flies of the most closely related cyclopodiine bat flies 
(D. biannulatus) as are the cyclopdiine bat flies of the species Eucampsiopoda inermis and E. sundaica (Fig. 2B).

Figure 2. Maximum likelihood phylogenetic trees of rhabdoviruses (A), bat flies (B), and pteropodid bats (C). 
The rhabdovirus phylogeny is based on concatenated codon-based alignments (8,256 positions) of nucleotide 
sequences of the canonical rhabdovirus nucleoprotein (N), phosphoprotein (P), matrix (M), glycoprotein (G), 
and RNA-dependent RNA polymerase (L) genes of 15 viruses of the subgroups A–C of the genus Ledantevirus 
with vesicular stomatitis Indiana virus (genus Vesiculovirus) as the outgroup. The bat fly phylogeny is based 
on concatenated codon-based alignments (876 positions) of mitochondrial cytochrome oxidase subunit II 
(COII) and cytochrome B (CYTB) nucleotide sequences of eight nycteribiids (subfamilies Cyclopodiinae 
and Nycteribiinae) with the streblid Ascodipteron phyllorhinae as the outgroup. The bat phylogeny is based on 
concatenated codon-based alignments (1,820 positions) of mitochondrial cytochrome C subunit I (COI) and 
CYTB nucleotide sequences of nine pteropodids of the subfamily Epomophorinae, with eight of them belonging 
to the tribe Myonycterini and Franquet’s epauletted fruit bats (tribe Epomophorini) as the outgroup. Circles on 
nodes indicate statistical confidence based on 1,000 bootstrap replicates of the data (closed circles = 100%; open 
circles ≥75%); scale bars indicate nucleotide substitutions per site.
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Phylogenetic analyses of the sampled bats revealed them to be members of a putative new species, clustering 
as an outgroup to Angolan soft-furred bats (Myonycteris angolensis) and approximately as divergent from those 
bats as are bats of other species pairs within the genus Myonycteris (Fig. 2C).

Discussion
Viruses of the family Rhabdoviridae infect vertebrates, invertebrates, and plants around the world10, 19. Their 
broad host range and wide geographic distribution reflect a deep evolutionary history of lineage-specific adapta-
tion to particular host assemblages and ecologies of transmission10, 19–21. Bats are disproportionately represented 
among mammalian hosts of rhabdoviruses18, 19. For example, many viruses of the rhabdoviral genus Lyssavirus, 
including rabies virus, cause bat-borne zoonoses18, 19, and bats are the dominant vertebrate hosts for at least two 
of the three subgroups of the genus Ledantevirus10, 12. The reasons for this association are not clear but may reflect 
the unique diversity, biology, or social systems of bats1, 22, 23.

Viruses of the family Rhabdoviridae also have deep evolutionary relationships with arthropods, as do 
numerous viruses of other families within the order Mononegavirales24, 25. These relationships are evident 
today in the strong ecological associations that many rhabdoviruses maintain with arthropods. Viruses of 
the genus Sigmavirus, for example, are transmitted only vertically among insects20, 26, whereas viruses of the 
genera Ephemerovirus, Tibrovirus, and Vesiculovirus may infect mammals but typically are vectored by bit-
ing midges, mosquitoes, sandflies, or ticks10, 19. Similarly, plant rhabdoviruses (genera Cytorhabdovirus and 
Nucleorhabdovirus) are vectored by aphids, leafhoppers, or plant hoppers, and even fish rhabdoviruses trans-
mitted directly through water may have associations with arthropods10, 19, 27. Rhabdovirus genome fragment 
integration into genomes of arthropods belonging to widely divergent lineages also supports a long history of 
rhabdovirus-arthropod coevolution19, 24, 28.

Despite this family-wide dual adaptation to arthropods and bats, vector-borne transmission of bat-associated 
rhabdoviruses has proven difficult to confirm. For example, Binger et al. searched for the vector of Kumasi rhab-
dovirus by trapping 1,240 female mosquitoes of six genera close to a large transient breeding colony of African 
straw-colored fruit bats (Eidolon helvum) in Ghana. No infected mosquitoes were identified29.

KYAV is a new putative member of the rhabdoviral genus Ledantevirus, sorting within subgroup B, which con-
tains bat-associated viruses (Fig. 2A)12. The discovery of KYAV in nycteribiid bat flies suggests that KYAV could 
be a vector-borne virus, with bat flies as vectors. However, we did not find KYAV in the blood or on mucosal 
surfaces of the bats from which the bat flies were collected. This negative finding may indicate limited or transient 
viremia in bats, as is characteristic of, for instance, rabies virus30–32; however, other rhabdoviruses have been 
recovered from mucosal surfaces of bats9, 33. Alternatively, KYAV may be an insect-specific virus that does not 
infect bats. The detection of KYAV in 5 out of 6 (83%) bat flies sampled is consistent with this notion because 
infection rates of arthropod vectors with vector-borne viruses tend to be much lower than this rate, typically 
below 10%34.

The relative CpG dinucleotide frequency in viral genomes varies widely among taxa35 and within virus groups36. 
CpG depletion has been used as an index of viral host adaptation16, 37, 38, although a recent study by Di Giallonardo 
et al. found the measure to be useful only for comparisons of higher taxonomic ranks such as Arthropoda com-
pared to Vertebrata36. CpG frequencies in KYAV and related rhabdovirus genomes (Fig. 3) therefore likely reflect 
a combination of virological factors and host adaptation, with emphasis on the former36. In this light, our analyses 
show that CpG depletion was lowest among the insect-specific sigmaviruses. Genomes of lyssaviruses (including 
rabies virus), which are transmitted directly between mammals in the absence of arthropod vectors, had higher lev-
els of CpG depletion17, 18. Genomes of ephemeroviruses, hapaviruses, and vesiculoviruses, which infect vertebrates 

Figure 3. Relative dinucleotide frequency in seven rhabdovirus groups. Shading indicates relative CpG 
frequency of the canonical rhabdovirus nucleoprotein (N), phosphoprotein (P), matrix (M), glycoprotein (G) 
and polymerase (L) genes, averaged across viruses within each group. Scale (bottom) is inverted, so that darker 
colors indicate higher relative CpG depletion. Numbers indicate sample sizes of viruses per group, and letters 
indicate host associations of viruses within groups (A = arthropod; M = mammal). CV indicates the coefficient 
of variation (percent) of CpG across virus genomes within each group. The cladogram (left) shows non-metric 
evolutionary relationships among genera, based on21. Included in the analysis were all viruses with full L, P, G, 
M and L gene sequences available in GenBank and the Virus Pathogen Resource database58 as of December 12, 
2016 (Supplementary Table S2).
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but are vectored by arthropods, had levels of CpG depletion comparable to those of the mammal-specific lyssavi-
ruses, if not somewhat higher. KYAV and Oita virus genomes stand out among ledantevirus genomes by having 
very high CpG frequencies, similar to insect-specific sigmaviruses. We again caution that dinucleotide composition 
appears to be shaped more by virus taxon than by host species36; however, this metric remains useful for comparing 
similar viruses that infect very different hosts (e.g., mammals versus arthropods)16, 39, 40.

The nycteribiid bat flies in which we found KYAV are representatives of a putative new cyclopodiine species 
within the genus Dipseliopoda (Fig. 2B)2. This assessment is currently based solely on the phylogeny created here 
from mitochondrial cytochrome oxidase subunit II and cytochrome C DNA sequence data. Formal classification 
of these bat flies will have to await morphological characterization and additional genetic analyses.

Likewise, at the time of sampling, we thought based on morphologic characteristics that the collected bats 
were Angolan soft-furred bats (Myonycteris angolensis, also known as Lissonycteris angolensis41). However, our 
analysis of mitochondrial DNA sequences placed these bats as outgroup to Angolan soft-furred bats. They appear 
to be novel members of the Epomophorinae in the genus Myonycteris divergent enough to merit consideration 
as members of a separate species. This assessment is preliminary as it presently relies only on a mitochondrial 
cytochrome oxidase subunit I and cytochrome C phylogeny (Fig. 2C). Morphological characterization and addi-
tional genetic analyses will be required to confirm this taxonomy. Nevertheless, the discovery of a putative new 
pteropodid bat is surprising given that Kibale National Park is one of the most extensively researched forested 
areas in Africa42, 43.

Overall, our data demonstrate that our understanding of the diversity of megabats, their ectoparasites, and 
their viruses is still fragmented. Viruses of bats are diverse in part because bats themselves are taxonomically 
diverse23, 44. Therefore, identifying unknown taxa of megabats would be important for understanding the true 
diversity of their ectoparasites and associated viruses. Unfortunately, limited biological material and a remote 
field location in the present case precluded other desirable analyses, such as serologic assessment of bats or other 
mammals. Future studies using enzyme-linked immunosorbent assay (ELISA) or western blots targeting the 
major antigenic proteins of KYAV (likely N and/or G) might help elucidate the ecology of this virus in bats and 
animals of other species. Such studies may also resolve whether the absence of circulating KYAV in the tested bat 
sera reflects transient viremia, as we speculate, or lack of infection.

Bat flies occasionally bite people2, 45. Therefore, enigmatic cases of human infection with bat-associated rhab-
doviruses may have resulted from incidental bites by bat flies or other bat-associated arthropods. For example, 
in 1969, Le Dantec virus infected a British dockworker who was bitten by an unidentified insect while unloading 
peanuts from a ship that had come from Nigeria29. Novel, divergent rhabdoviruses have also been found in appar-
ently healthy people in Africa, suggesting unknown pathways of zoonotic transmission46. Our identification of an 
unknown rhabdovirus on unknown bat flies of unknown bats suggests further research on the diversity of these 
insects and their role as disease vectors might prove fruitful.

Methods
In February 2010, nine pteropodid bats were mist-netted from an established roost of approximately 12 bats in a 
peridomestic structure (a storeroom behind a kitchen) at the edge of Kibale National Park, western Uganda43, 47.  
Blood, oral swabs, urogenital swabs, and ectoparasites were obtained from bats, and bats were immediately 
released thereafter. All protocols for animal and sample handling were approved in advance by the Uganda 
Wildlife Authority, the Uganda National Council for Science and Technology, Makerere University, McGill 
University, and the University of Wisconsin-Madison, and were performed in accordance with all relevant guide-
lines and regulations.

Bat flies (the only ectoparasites found on sampled bats) were kept separate by bat and were stored whole 
at −20 °C in RNAlater solution (Thermo Fisher Scientific, Inc., Waltham, MA, USA). Swab samples were also 
stored in RNAlater solution at −20 °C. Blood was separated by centrifugation into components for long-term 
storage at −80 °C. Single bat flies and swab tips were homogenized by bead beating using a portable homogenizer 
(Terralyzer; Zymo Research Corporation, Irvine, CA, USA). RNA was extracted from all sample types and con-
verted to cDNA in the field using lyophilized reagents (RNA to cDNA EcoDry Premix, TaKaRa Bio USA Inc., 
Mountain View, CA, USA) and then converted into double-stranded cDNA (NEBNext Second Strand Synthesis 
Module, New England Biolabs, Ipswich, MA, USA). DNA was stabilized for long-term storage and transport to 
the USA at ambient temperature (DNAstable, Biomatrica, San Diego, CA, USA).

DNA was reconstituted, and libraries were prepared for NGS as previously described48, 49; this method is 
approximately as sensitive as real-time quantitative PCR for detecting viruses11. Briefly, DNA was purified using 
Agencourt Ampure XP beads (Beckman Coulter, Brea, CA, USA). Approximately 1 ng of DNA was prepared for 
sequencing on a MiSeq instrument (Illumina, San Diego, CA, USA) using the Nextera XT DNA sample prepara-
tion kit (Illumina). Sequence data were analyzed using CLC Genomics Workbench version 8.5 (CLC bio, Aarhus, 
Denmark). Low-quality bases were trimmed (phred quality score < 30), short reads (<75 bp) were discarded, 
and the remaining reads were subjected to de novo assembly. Assembled contiguous sequences (contigs) were 
analyzed for nucleotide- (blastn) and protein-level (blastx) similarity to known viruses in GenBank. All sequences 
generated in this study were deposited into GenBank. All sequences used for analyses and their accession num-
bers are listed in Supplementary Table S1.

Genetic similarity between Kanyawara virus (KYAV) and its relatives was assessed using pairwise sequence 
comparisons in the computer program MEGA750. Maximum likelihood phylogenetic analyses were conducted 
on codon-based alignments of concatenated virus genes, with poorly aligned regions removed. Alignments were 
created using the MAFFT algorithm51 implemented in Translator X52, with the Gblocks algorithm53 applied to 
remove poorly aligned regions. Trees were constructed using the maximum likelihood method implemented 
in PhyML54, with best-fit models of molecular evolution estimated from the data using jModeltest55. Trees were 
displayed using FigTree56. The same phylogenetic methods were applied to mitochondrial gene sequences of bats 
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(COI and CYTB) and bat flies (COII and CYTB nucleotide sequences) extracted from deep sequence data to 
investigate the taxonomy of sampled bats and bat flies.

Based on coding-complete virus genome sequences detected in the course of bioinformatics analy-
sis (see Results), PCR primers KYAV-10368 (5′-GCGAACCCGACGATCATAGT-3′) and KYAV-10695 
(5′-GCTGTGCATTCCAGTCTCCT-3′) were designed to amplify a 327-bp region of the KYAV RNA-dependent 
RNA polymerase (L) gene. PCR conditions were optimized using bat fly cDNA samples known to be positive and 
negative for KYAV infection by NGS. The optimized PCR was used to test cDNA extracted from swab samples. 
PCRs were conducted using the HiFi kit (Kappa Biosystems, Wilmington, MA, USA), with 40 cycles at 94 °C for 
15 sec, 56 °C for 15 sec, and 72 °C for 15 sec. Amplicons were visualized on 2% agarose electrophoretic gels stained 
with ethidium bromide.

The relative frequency of CpG dinucleotide pairs was calculated for each of the canonical rhabdovirus 
genes (N, P, G, M, and L) from KYAV and related rhabdoviruses using the R Biostrings package57. Rhabdovirus 
sequences included in this analysis were selected objectively, using all coding-complete genomes from major 
rhabdovirus clades (genera) with at least four members available in GenBank and the Virus Pathogen Resource 
database58 as of December 12, 2016. Differences in mean CpG depletion among groups were evaluated for sta-
tistical significance using ANOVA, with pairwise differences between groups examined using the Holm post-hoc 
method, which adjustments for multiple testing59. Variances in CpG depletion among groups were compared 
using Levine’s test60. Statistical analyses were performed in the computer package R61.

Data Availability. All data generated during the current study are available in GenBank (accession numbers 
KY385385-385392) or are included in this published article and its Supplementary Information files.
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