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Abstract
1.	 Plant species with fleshy fruits offer animals rewards such as sugar, protein, and 
fat, to feed on their fruits and disperse their seeds. They have also evolved visual 
and olfactory signals indicating their presence and ripeness.

2.	 In some systems, fruit color serves as a reliable visual signal of nutrient content. 
Yet even though many volatile chemicals used as olfactory signals derive from 
nutrients animals seek, it is still unknown whether fruit scent encodes information 
regarding nutrient content in wild fruits.

3.	 We examine the relationship between olfactory signals and nutrient rewards in 28 
fruiting plant species in Madagascar. We measured the relative amounts of four 
chemical classes in fruit scent using gas chromatography and mass spectrometry, 
as well as the relative amounts of sugar and protein in fruit pulp.

4.	 We found that protein levels are not associated with elevated amounts of chemi‐
cally related volatile compounds in fruit scent. In contrast, sugar content is strongly 
associated with the chemical composition of fruit scent.

5.	 To our knowledge, this is the first research to explore the connection between 
fruit chemical signals and nutrient rewards. Our results imply that in the case of 
sugar, fruit scent is predictive of nutrient content and hence an honest signal.
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1  | INTRODUC TION

Fleshy fruits have evolved multiple times across angiosperm fami‐
lies (Bolmgren & Eriksson, 2005, 2010), and dispersal by fruit‐eating 
animals is the predominant seed dispersal strategy among tropical 

woody plants (Howe & Westley, 1988). Excluding a few cases of mi‐
metic fruits that do not offer a reward (Galetti, 2002), fleshy fruits ob‐
tain animal seed dispersal services by offering macronutrients such 
as sugar, fat, and protein, as well as water, antioxidants, minerals, and 
vitamins (Contreras‐Calderón, Calderón‐Jaimes, Guerra‐Hernández, 
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& García‐Villanova, 2011; Herrera, 1984; Howe & Estabrook, 1977). 
In many lineages, fruit traits such as size (Brodie, 2017; Galetti et 
al., 2013), shape (Lord, 2002), and husk thickness (Janson, 1983) are 
suggested to have evolved to increase the accessibility and attrac‐
tiveness of fruits to frugivores (Valenta, Nevo, Martel, & Chapman, 
2017). In addition to characteristics which directly enhance fruit 
quality from the perspective of the frugivore, some fruit traits have 
evolved as signals which help animals detect, identify, and select ripe 
fruits. Fruits whose seeds are dispersed by different animals tend to 
be differently colored (Lomáscolo & Schaefer, 2010; Valenta et al., 
2018), and there is evidence that fruit color is under selection to in‐
crease color contrasts with background foliage to render fruits more 
visually conspicuous (Lomáscolo & Schaefer, 2010; Nevo, Valenta, et 
al., 2018; Schaefer, Valido, & Jordano, 2014). Similarly, fruit scent—
the volatile chemicals emitted by ripe fruits—plays a role in frugivore–
plant interactions (Nevo & Ayasse, 2019). Ripe fruit scent facilitates 
bat (Hodgkison et al., 2013, 2007) and primate (Melin et al., 2019; 
Nevo et al., 2015; Nevo & Heymann, 2015; Nevo, Razafimandimby, 
Jeffrey, Schulz, & Ayasse, 2018; Nevo & Valenta, 2018; Valenta et 
al., 2013) fruit selection, and the ripeness of fruits is signaled by the 
chemical composition of fruit scent (Hodgkison et al., 2007; Nevo, 
Heymann, Schulz, & Ayasse, 2016; Nevo, Razafimandimby, et al., 
2018). In this, fruit scent is now recognized to play an important 
role in animal–plant interactions, similar to the more thoroughly 
studied role of floral scent in mediating pollinator–plant interactions 
(Raguso, 2008; Schiestl, 2015).

Whether visual and olfactory signals go beyond the signaling 
ripeness/presence and provide information on nutrient content is 
still debated (Albrecht, Hagge, Schabo, Schaefer, & Farwig, 2018). 
Studies of fruit color have predominated research on this debate. In 
the black elder (Sambucus nigra), visual contrasts in the pedicels bear‐
ing the fruits are positively associated with sugar content (Schaefer 
& Braun, 2009). Chromatic and achromatic (brightness) properties 
of fruits are also sometimes correlated with nutritional content 
(Cazetta, Galetti, Rezende, & Schaefer, 2012; Valido, Schaefer, & 
Jordano, 2011). In Mediterranean habitats, fruit color correlates with 
lipid content (Schaefer et al., 2014), and in northern Europe, fruit 
brightness predicts lipid, sugar, and anthocyanin content (Albrecht 
et al., 2018). Interestingly, the relationship between lipid content and 
brightness is inverted in the latter two studies (Albrecht et al., 2018; 
Schaefer et al., 2014), suggesting that color signals may be location 
dependent and do not reflect an inherent biochemical connection 
between signal and reward. The absence of biochemical associations 
between signal and reward renders the evolution of honest signals 
less likely and would require either repeated interactions that allow 
frugivores to punish dishonest mutualists or a costliness of signals 
(Schaefer & Ruxton, 2011).

The study of fruit scent has lagged far behind that of fruit color, 
and little is known about whether scent is predictive of nutritional 
content (Nevo & Ayasse, 2019; Nevo & Valenta, 2018). Most in‐
vestigations of fruit scent have estimated overall amounts of VOCs 
emitted and did not identify their chemical constituents (Lomáscolo, 
Levey, Kimball, Bolker, & Alborn, 2010; Valenta et al., 2015, 2013), or 

have focused on summarizing indices based on entire bouquets rather 
than individual chemicals (Nevo et al., 2016; Nevo, Razafimandimby, 
et al., 2018). Ethanol, a product of sugar fermentation, has been 
suggested to offer a reliable cue for sugar content in fruits (Dudley, 
2000, 2002), and while it is correlated with sugar level in some fruits 
(Dominy, 2004; Sánchez, Korine, Pinshow, & Dudley, 2004; Sánchez 
et al., 2006), evidence for its use by frugivores is so far absent (Nevo 
& Valenta, 2018). Notably, ethanol is not a plant secondary metabo‐
lite but rather a product of microbial activity. Thus, there is to date no 
information about whether aroma compounds synthesized by plants 
are indicative of fruit nutritional content.

The scent of fruit of a given species typically contains dozens to 
hundreds of volatile organic compounds (VOCs), including terpenoids, 
aromatics, fatty acid derivatives, and, more rarely, nitrogen‐ and sul‐
fur‐containing compounds (Nevo et al., 2016; Nevo, Razafimandimby, 
et al., 2018; Nevo & Valenta, 2018). Many fruit VOCs are synthesized 
from precursors to nutritionally beneficial compounds, and thus, the 
presence or concentration of various VOCs may reliably convey the 
nutrient content of a fruit (Goff & Klee, 2006). A direct biochemical 
relationship between signal and reward gives a strongest basis on 
which honest signals can evolve (Schaefer & Ruxton, 2011). The evo‐
lution of such honest signals is expected because they can enhance 
fitness of both animals and plants. Under this scenario, animal dis‐
persers can select the most nutritious fruits, and plants can benefit 
by deterring animals from feeding on fruits that do not have seeds 
ready for dispersal. In addition, offering dispersers reliable nutrient 
information can make fruits more attractive and give plants an ad‐
vantage in attracting seed dispersers. However, to date, no study has 
tested whether the concentration of any VOC or class of VOCs is a 
reliable indicator of nutrient content in wild fruits.

Here, we examine whether fruit scent chemistry is predictive of 
nutrient content across 28 plant species from Ranomafana National 
Park, Madagascar. Previous work has shown that lemurs, the main 
seed dispersers in the system, rely on fruit scent to identify ripe 
fruits (Nevo, Razafimandimby, et al., 2018; Valenta et al., 2013). We 
chose four VOC classes hypothesized to be positively correlated 
with nutrient content: nitrogen/sulfur‐containing compounds 
(henceforth N/S), terpenoids, methyl/ethyl esters (Nevo & Valenta, 
2018), and aromatic compounds. N/S compounds are synthesized 
from metabolized protein (Knudsen, Eriksson, Gershenzon, & Ståhl, 
2006), and thus, their presence in fruit scent can possibly be asso‐
ciated with protein content. Similarly, aromatic compounds are syn‐
thesized from the amino acid l‐phenylalanine (Widhalm & Dudareva, 
2015) and may therefore be more common in protein‐rich fruits. 
Terpenoids are ubiquitous in fruit scent (Hodgkison et al., 2013; 
Nevo, Razafimandimby, et al., 2018) and share a biosynthetic path‐
way with isoprene—a compound whose emission in leaves is associ‐
ated with elevated photosynthesis (Lerdau & Throop, 2000). Methyl 
and ethyl esters are synthesized from fusing a carboxylic acid and 
methanol or ethanol, which have been suggested to be a product 
of fruit maturation, either of cell wall degradation (methanol) or of 
sugar fermentation (ethanol) (Nevo & Valenta, 2018; Sánchez et al., 
2006). Our main goal is to examine whether, across species, chemical 
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signals consistently and reliably signal fruit nutrient quality. We con‐
ducted chemical analysis of fruit nutritional content and scent, and 
used phylogenetically controlled models to examine whether, across 
species, fruits with higher concentrations of protein and sugar also 
emit more NS compounds, aromatic compounds, terpenoids, or 
methyl/ethyl esters. We further test the phylogenetic signal in all 
traits to examine whether closely related taxa tend to be similar and 
compare the nutritional content of lemur‐ and bird‐dispersed fruits.

2  | MATERIAL S AND METHODS

The project was conducted in Ranomafana National Park, Madagascar 
between October 2016 and December 2017. In total, 410 ripe fruits 
(mean: 14.6 per individual tree) of 83 individual plants (mean: 2.96 per 
species) of 28 plant species were collected and brought to the labo‐
ratory within 3 hr of collection for processing (Table S1 and Figure 
S1). Fruits were collected during the day (8–14 am). As a part of a 
larger project that compared ripe and unripe fruits, all fruits included 
in the study were fully ripe: They changed their color and softened 
to the degree to which ripe fruits of the species do, contained fully 
mature and viable seeds, and were generally in the ripeness stage 
in which they are consumed by frugivores. Although we could not 
fully standardize the sample collection (e.g., collect all fruits at “peak 
ripeness”), each sample is composed of multiple individual fruits, and 
in the vast majority of species also multiple individual plants, pooled 
together and averaged (Table S1). This should eliminate most of the 
noise, which may have been introduced during sample collection. 
Seventeen species in the system are consumed solely by lemurs, who 
are also known to relay on fruit scent to identify ripe fruits, and 11 
are either exclusively or to a large degree consumed by frugivorous 
birds (Nevo, Razafimandimby, et al., 2018, Table S1).

2.1 | Scent sampling and analysis

We used fruit scent data published in Nevo, Valenta, et al. (2018). 
We sampled scent using semistatic headspace procedure. We 
placed the sample in a chamber made of 40  cm of an oven bag 
(Toppits). The bags were completely sealed on one end. On the 
other, they were sealed around a teflon tube holding a chroma‐
toprobe VOC trap (Dötterl & Jürgens, 2005). Chromatoprobes 
contained 1.5  mg Tenax, 1.5  mg of Carbotrap, and 1.5  mg of 
Carbosieve III (all from SigmaAldrich) trapped between layers of 
glass wool. After 30 min, we pumped the accumulating air in the 
bag for 1 min onto the trap at 200 ml/min. 1.5 hr later, the bag 
was emptied by pumping all air onto the same trap for 10 min. 
Afterward, we stored the probe at −20°C.

We analyzed scent samples on an Agilent gas chromatograph 
7890B equipped with an Agilent DB5 unpolar capillary column (DB5, 
30 m × 0.25 mm diameter; Agilent Technologies) and a cold injection 
system (CIS 4C; Gerstel), coupled with an Agilent mass spectrome‐
ter 5977A. Samples were introduced to the thermal desorption unit 
(TDU) at 10°C. After 1 min, the TDU started heating up at 15°C/min 

until it reached 300°C, a temperature which was held for 15 min. 
The liner was cooled to −100°C using liquid nitrogen. After the trans‐
fer to the liner, it was heated up with 12°C/min until the temperature 
reached 290°C, which was maintained for 6 min. Initial oven tem‐
perature was 50°C. This temperature was maintained for 1 min and 
then increased by 10°C/min to 325°C, which was held for 20 min. 
The MS transfer line temperature was set to 280°C, the MS source 
temperature was set to 230°C, and the MS quad temperature was 
set to 150°C. The MS operated at electron ionization mode and 
scanned between 35 and 450 Da.

We analyzed the samples using Amdis 2.71. We identified VOCs 
based on their mass spectra using the NIST11 mass spectra library 
and their retention indices, which were calculated using an n‐alkane 
reference mixture. Compounds that are known contaminants (e.g., 
siloxanes and phthalates) were excluded. Other contaminants that 
we found in control samples were also potentially genuine plant 
compounds. We therefore calculated their mean amount in the con‐
trols and subtracted this sum from all samples.

To calculate the relative abundance of N/S compounds, ar‐
omatic compounds, terpenoids, and methyl/ethyl esters, we 
summed the estimated amount of all compounds of those cate‐
gories and divided them by the sum of all compounds identified 
in the scent bouquets. We used relative amounts of chemical 
compounds because it allowed direct comparison of species with 
fruits of varying sizes, and also because when dealing with com‐
plex scent bouquets, animals tend to perceive fragrance as mix‐
tures rather than individual compounds (Wilson, Stevenson, 
& Stevenson, 2006), thus making the relative amounts of scent 
compounds more ecologically relevant. N/S compounds were de‐
fined as all VOCs that contain nitrogen or sulfur. Aromatic com‐
pounds include all those which contain at least one aromatic ring. 
Terpenoids include all monoterpenes, sesquiterpenes, and deriva‐
tives such as linalool. Methyl/ethyl esters include all volatile esters 
with methanol or ethanol comprising the alcohol component. Note 
that some compounds belong to two categories (e.g., benzoic acid, 
methyl ester) and are thus used in both sugar and protein analyses. 
As a result, the relative share of the compound classes may exceed 
100% in some species.

2.2 | Nutritional analysis

Subsequent to scent analysis, the same fruits were used for nu‐
tritional analyses. Seeds were extracted, the wet mass was deter‐
mined, samples were dried at 45°C until fully dry, and dry mass 
was determined. The nitrogen content (a proxy of crude protein) 
was measured by mass spectrometry according to Tom‐Dery, Eller, 
Jensen, and Reisdorff (2018) in aliquots of dried samples by an el‐
emental analyzer (EURO‐EA 3000; Euro Vector). Mass calibration 
was conducted by the use of the certified standard 2,5‐bis (5‐tert‐
butyl‐2‐benzoxazol‐2‐yl) thiophene (6.51% N; 72.52% C; HEKAtech). 
Sugar content analysis followed the photometric procedures out‐
lined by Donati, Bollen, Borgognini‐Tarli, and Ganzhorn (2007). Dried 
samples were ground to pass a 1‐mm sieve and kept in a desiccator 
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TA B L E  1  Scent and nutritional data for all species

Nutrition Scent

% nitrogen (mean 
absolute amount in 
a single fruit, mg)

% sugar (mean abso-
lute amount in a single 
fruit, mg) % aromatics % terpenoids % N/S

% methyl/
ethyl esters

Anacardiaceae

Micronychia macrophylla 1 (0.9) 29 (28.7) 0.5 91.1 0.0 0.1

Weinmannia rutenbergii 0.5 (0) 6.8 (0.6) 2.3 33.6 6.4 0.0

Araliaceae

Polyscias sp. 1.3 (3) 16.6 (51.3) 12.2 44.8 6.1 0.0

Clusiaceae

Garcinia sp. 0.5 (1.3) 37.8 (116.8) 39.3 17.6 0.1 81.0

Euphorbiaceae

Macaranga myriolepida 1.6 (0.3) 6.1 (1) 0.3 95.6 0.1 0.6

Hypericaceae

Psorospermum androsaemifolium 1.6 (1.6) 13.2 (13.4) 8.5 77.3 0.0 0.0

Lauraceae

Cryptocaria crassifolia 1.6 (2.5) 18.1 (29.4) 0.3 95.3 0.0 0.0

Cryptocaria sp. 0.7 (16.8) 3.3 (79.4) 0.1 97.9 0.0 0.0

Moraceae

Ficus botryoides 1.5 (35) 9.8 (219.8) 4.0 62.4 0.4 25.2

Ficus lutea 0.6 (3.2) 25.6 (125.8) 0.7 90.5 0.3 0.2

Ficus politoria 1.8 (2.5) 20.4 (27) 12.1 36.7 2.9 0.4

Ficus reflexa 0.4 (0.2) 46.3 (25.6) 6.9 29.4 0.3 1.0

Ficus tiliifolia 0.8 (13.3) 31.8 (529.5) 0.1 0.9 0.0 86.1

Myrtaceae

Eugenia sp. 1.2 (5.3) 3.9 (18.8) 0.5 98.3 0.0 0.0

Psidium cattleianum 0.5 (7.3) 40.9 (508.3) 0.6 19.3 0.1 10.6

Syzygium emirnese 0.7 (0.2) 56.7 (19.2) 6.4 40.2 0.2 16.2

Syzygium parkeri 0.6 (0.5) 26.2 (20.7) 10.3 23.6 2.0 0.0

Oleaceae

Noronhia incurvifolius 0.7 (3.1) 38.7 (166.5) 0.2 13.0 0.0 0.4

Piperaceae

Piper sp. 1.4 (0.2) 13.4 (1.9) 0.8 93.7 0.0 0.0

Primulaceae

Oncostemum botryoides 0.5 (0.5) 69.7 (66.2) 75.6 14.6 0.0 73.1

Oncostemum nervosum 0.7 (0.1) 51 (8.4) 2.0 71.4 1.1 2.8

Rubiaceae

Chassalia ternifolia 1.3 (0.1) 22.7 28.9 3.3 1.5

Coptosperma sp. 0.6 (2.3) 36.7 (142.4) 11.9 1.8 0.0 61.1

Mussaenda arcuata 1.4 (1.5) 23.1 (23.6) 7.5 60.2 0.2 7.4

Mussaenda erectiloba 0.9 (5.5) 32.6 (204.1) 2.1 94.9 0.0 0.0

Psychotria sp. 1.1 (1.1) 47.9 (47.9) 4.1 70.3 0.1 7.6

Pyrostria sp. 0.5 (0.6) 46.1 (56.5) 5.0 9.2 0.1 12.2

Rutaceae

Zanthoxylum madagascariensis 1.4 (0.6) 5.4 (2.3) 1.3 96.4 0.0 0.0

Percentage terpenoids, N/S compounds, and methyl/ethyl esters in scent; percentage of nitrogen (proxy of protein content) and sugar in ripe fruit dry 
weight. Note that in both scent and nutrition the percentages presented here do not add up to, or exceed, 100%. In scent, the rest refers to various 
aromatic compounds and fatty acid derivatives. In species in which scent components exceed 100%, it is because some compounds are classified in 
two categories (e.g., methyl benzoate). In nutrition, the analyses do not consider other components (e.g., fat, fiber, secondary compounds). Numbers 
in brackets are absolute amounts of nutrients (mg) in a single fruit.
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prior to analyses. Soluble carbohydrates were extracted with 50% 
methanol. Concentrations of soluble sugars were determined as the 
equivalent of galactose after acid hydrolyzation of the 50% metha‐
nol extract. They should be considered as relative units rather than 
absolute measures.

2.3 | Statistical analysis

In all cases where more than one plant per species was available, we 
pooled all samples and calculated the mean amounts for the spe‐
cies. Sugar levels were missing for Chassalia ternifolia, thus analyses 
that include sugar are for 27 species. All our models used some of 
six variables: % protein, % sugar (both from the dry weight), % N/S 
compounds, % aromatics, % terpenoids, and % methyl/ethyl esters 
(latter four from total scent bouquet). Protein, sugar, and % aromat‐
ics were log transformed to acquire distributions compatible with 
the statistical tests. N/S compounds and methyl/ethyl esters were 
highly zero‐inflated, with over a third of the species not emitting 
these compounds at all. Thus, we converted their values to binomial 
variables, noting whether NS compounds or methyl/ethyl esters are 
present or absent in the scent bouquet of a species.

We used two phylogenetically controlled least‐square regression 
models (PGLS) and a phylogeny by Zanne et al. (2014) and Brownian 
motion correlation structure to test whether (a) protein content in 
pulp is predicted by the presence of N/S compound or the relative 
amount of aromatic compounds, independent of phylogeny and each 
other; and (b) sugar levels are predicted by the presence of methyl/
ethyl esters and the relative amount of terpenoids, independent of 
phylogeny, and each other. To verify model assumptions, we used 
variance inflation factors to verify that there were no collinearity is‐
sues, DFFITS for influence diagnostics, and q–q plots, histograms of 
the residuals and plotting the residuals versus the fitted values to ver‐
ify the normality and homogeneity of the residuals. We used a similar 
approach to compare the protein and sugar contents of lemur‐ and 
bird‐dispersed species. Species were categorized as either lemur‐
dispersed (exclusively lemur‐dispersed) and bird‐mixed (exclusively, 
or mostly bird‐dispersed, in some species, there are also records of 
lemurs occasionally feeding on the fruits). To further assess the ro‐
bustness of the results, we calculated the phylogenetic signal in all 
variables. Since in all cases we found no significant phylogenetic signal 
(see Section 3), we also ran all analyses as linear regression models, 
that is, using the same variables but without controlling for phylogeny. 
We calculated the phylogenetic signal in nutrient content and VOC 
class using Pagel's Lambda (Pagel, 1999). All analyses were done using 
R 3.4.3 (R Core Team, 2014) using packages ape (Paradis, Claude, & 
Strimmer, 2004), car (Fox & Weisberg, 2011), phytools (Revell, 2012), 
and nlme (Pinheiro, Bates, DebRoy, Sarkar, & R Core Team, 2017).

3  | RESULTS

Both scent and nutritional values showed strong variation, even 
within families (Table 1; Table S1). For example, % nitrogen varied 

between the congeneric Ficus reflexa and Ficus politoria (Moraceae) 
between 0.4% and 1.8%, respectively. Sugar levels showed 
even greater variance, ranging between 3.3% in Cryptocaria sp. 
(Lauraceae) and 69.7% in Oncostemum botryoides (Primulaceae) 
(Table 1; Table S1). Although the small sample size within species 
did not allow quantitative analysis of within‐species variance, spe‐
cies did not show much variance, and especially in terms of scent, 
fruits from different individuals tended to be dominated by the same 
chemical compounds.

Lemur‐ and bird‐dispersed species differed in their protein, but 
not sugar content. Nitrogen levels were significantly higher in bird‐
dispersed species (pgls: p = .014), but sugar content was similar (pgls: 
p = .8; Figure 1).

Contrary to our predictions, protein levels were not predicted by 
either the presence of N/S or the aromatic compounds. The model 
containing N/S and aromatic compounds did not explain the vari‐
ance in % nitrogen in fruit pulp better than a null model which did not 
include them (likelihood ratio test: L. ratio = 0.74, p = ns; Figure 2).

For sugar, the full model which included % terpenoids and 
the presence/absence of methyl/ethyl esters explained variance 
in fruit sugar content significantly better than the null model (L. 
ratio = 16.14, p < .001). Contrary to our expectations and what the 
literature suggests, terpenoids in ripe fruit scent were negatively 
correlated with the relative amount of sugar in fruits (PGLS: p < .01; 
Figure 3a). In contrast, the presence of methyl and ethyl esters was 
associated with elevated sugar levels (PGLS: p  =  .02; Figure 3b). 
Originating from the same model, these relationships are indepen‐
dent of phylogeny and each other.

We found no phylogenetic signal in any of the traits measured (% 
nitrogen, % NS compounds, % aromatic compounds, % terpenoids, 
% methyl/ethyl esters: λ  <  .01, p  =  1; % sugar: λ  =  .53, p  =  .35). 
Consequently, the results of linear regression models (identical to 
those reported above but not controlling for phylogeny) were quali‐
tatively identical to those of the PGLS models (not shown).

4  | DISCUSSION

Our study examined whether scent reliably and consistently sig‐
nals nutrients in wild, ripe fruits. We tested whether certain chemi‐
cal classes in fruit scent predict the protein concentration or sugar 
levels. We found that protein levels are not associated with the 
relative amounts of either aromatic or nitrogen/sulfur‐containing 
compounds, whereas sugar levels are strongly associated with the 
amount or presence of terpenoids and methyl/ethyl esters in fruit 
scent.

The absence of a clear relationship between protein levels and 
N/S compounds may be the result of several factors. In addition to 
synthesis by the plant, the presence of nitrogen‐ and sulfur‐contain‐
ing compounds is likely to be affected by degradation of fruit tissue 
by microbes. This may in turn be influenced by the susceptibility of 
fruits to infestation by microbes, which is unrelated to fruit protein 
content. In other words, a protein‐rich yet well‐protected fruit may 
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emit less N/S compounds than a similar, but less protected, fruit. 
Presumably, this and other effects may be weak enough if large 
amounts of protein in the pulp would result in large amounts of N/S 
compounds in the scent, which will mask other factors like microbial 
activity. Alas, protein levels in Malagasy fruits, in this study and in 
others (Donati et al., 2017; Ganzhorn et al., 2009; Valenta & Melin, 
2012), are very low relative to fleshy fruits in other tropical systems. 
Not surprisingly, the scent of Malagasy fruits also tends to include 
fewer N/S compounds (Nevo & Valenta, 2018). Thus, paradoxically, 
even though in these conditions reliable signals for protein content 
would be highly useful for frugivores, it is possible that the low 
amounts of protein in fruit pulp generate a signal that is too weak 
to be detected by either the methods used or, possibly, frugivorous 
animals. A similar explanation might apply to the absence of any cor‐
relation between protein content and aromatic compounds in fruit 
scent.

Another possible explanation is that the absence of an associ‐
ation between signal and reward is linked to the lower amounts of 
protein found in lemur‐dispersed fruits (Figure 1). Due to their lower 
color vision capacities and more developed olfactory systems, le‐
murs tend to rely on fruit scent more than most frugivorous birds 
(Nevo & Ayasse, 2019). In a previous study of the system used here, 
only lemur‐dispersed fruits were found to signal ripeness through 
scent (Nevo, Razafimandimby, et al., 2018). It is thus possible that 
since the species which benefit more from scent signaling (lemur‐
dispersed) are poor in protein, they have simply not been selected 
to emit reliable signals exposing their low protein content, whereas 
bird‐dispersed species do not do so because their target seed dis‐
perser is less likely to use olfactory cues. In other words, the rela‐
tionship we expected to find would require bird‐dispersed species to 
emit N/S compounds, but they do not benefit from doing so.

In contrast, we found that across species sugar levels in fruits 
are strongly associated with chemical constituents of fruit scent. The 
positive association between methyl and ethyl esters and sugar levels 
is not surprising as alcohols are often the limiting factor in ester syn‐
thesis (Beekwilder et al., 2004). Methanol, the precursor for methyl 
esters, is a product of cell wall degradation, which also leads to fruit 
softening (Sánchez et al., 2006). Ethanol, which is used for ethyl ester 
synthesis, is a product of microbial fermentation, and thus, elevated 

sugar levels are likely to be associated with increased ethanol syn‐
thesis. Thus, sugars and methyl/ethyl esters may be highly correlated 
due to a straightforward biochemical pathway, and their presence in 
fruit scent is likely to be an honest signal for sugar content.

The negative relationship between sugars and terpenoid emis‐
sion was in contrast to our expectations. We predicted a positive 
relationship based on the positive correlation between photosyn‐
thetic activity and isoprene synthesis in leaves (Lerdau & Throop, 
2000), and the corollary inference that increased photosynthesis 
should be associated with both sugar and terpenoid synthesis. While 
terpenoids have been shown to function as frugivore attractants 
(Hodgkison et al., 2013; Nevo et al., 2015, 2016), many function as 
chemical defense barriers (Farmer, 2014; Nevo et al., 2017; Unsicker, 
Kunert, & Gershenzon, 2009). Thus, their synthesis and emission in 
ripe fruits may be dominated by factors unrelated to animal signal‐
ing. Yet crucially, the question at the core of our study was whether 
the presence of various chemicals in fruit scent may be consistently 
associated with fruit nutritional content. Even though this result is 
contrary to our predictions, this strong negative relationship may 
still be useful for frugivores.

It is important to note that the relationships reported here are 
across species, not within them. As such, the results emphasize that 
the presence or amount of some chemicals in fruit scent may be con‐
sistently associated with sugar content. This is the basis for honest 
signaling in fruit scent: If scent compounds are biochemically asso‐
ciated with nutrients and their presence provides the same informa‐
tion across species, animals can learn to use them in the context of 
food selection (Schaefer & Ruxton, 2011). Given these results, we 
predict that a similar relationship between sugar and aliphatic esters 
and terpenes may be present within species. While beyond the scope 
of the current study, future studies should include behavioral bioas‐
says to examine to what extent animals prefer fruits whose scent is 
richer in relevant scent compounds. Yet, another possible approach 
to address this question is to experimentally manipulate the nutri‐
ents available for plants and record whether this affects the volatiles 
we hypothesized to be associated with that nutrient.

Our study focused on four chemical classes that may be predictive 
of sugar and protein contents. Yet, animals may seek other macronu‐
trients such as fat or use chemical cues to avoid undesirable contents 

F I G U R E  1  Relative amounts of sugar 
and nitrogen in lemur‐ and bird‐mixed 
consumed species. Log % sugar, log % 
nitrogen—log transformed percentage 
sugar and nitrogen in dry pulp. N = 28 
species for protein and 27 for sugar (see 
Section 2 for more details). p Values 
are from a phylogenetically controlled 
generalized least‐squares regression 
model (PGLS) using he phylogeny 
provided by Zanne et al. (2014)
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such as fiber or unpalatable secondary metabolites. Similarly, scent 
may also signify the presence of micronutrients such as vitamins. 
This could unfortunately not be addressed in the current study due 
to the difficulties in extracting enough plant material to conduct all 
the analyses, but remain an interesting avenue for future studies.

A biochemical association between signal and reward is prob‐
ably the most important and common substrate on which honest 
signals can evolve, especially in fleshy fruits, in which the fruit is 
both signal and reward (Schaefer & Ruxton, 2011). To our knowl‐
edge, a relationship between chemical signals and reward has so far 
only been identified in specialized ant‐dispersal systems in which 
the attractant—often a long chain fatty acid—also serves as the re‐
ward (Pfeiffer, Huttenlocher, & Ayasse, 2010). Our results expand 
this phenomenon to much larger and generalized seed dispersal sys‐
tems and provide the first evidence for a association between fruit 
chemical signals and nutrient rewards in fleshy fruits. These results 
suggest that fruit chemical signaling through scent is—at least in the 
case of sugar—constrained by their macronutrient content and thus 
that within species fruit scent may function as an honest signal indi‐
cating fruit quality.

ACKNOWLEDG MENTS

The project was funded by a German Science Foundation (Deutsche 
Forschungsgemeinschaft; DFG) grant (NE 2156/1‐1). We thank Patricia 
Wright, Jean‐Claude Razafimahimodison, Pascal Rabeson, and the en‐
tire staff of Centre ValBio for their support during field work. Samples 
were collected under research permit number 203/16/MEEF/SG/
DGF/DSAP/SCB.Re and exported under permit number 322N‐EV11/
MG16. We thank MICET for help in obtaining research and export 
permits. We thank the editor and two anonymous reviewers for their 
helpful comments on a previous version of this manuscript.

CONFLIC T OF INTERE S T

The authors have no competing interests.

AUTHOR CONTRIBUTION

ON acquired funding, designed the study, collected samples, con‐
ducted fruit scent analyses, conducted statistical analyses, and 

F I G U R E  2  Relationship between nitrogen and the relative share of aromatic compounds (a) or (b) presence of nitrogen/sulfur (N/S) 
containing compounds in fruit scent. N/S—nitrogen‐ and sulfur‐containing VOCs. log % protein—percentage protein in fruit dry weight, 
log transformed. Log % aromatics—percentage aromatic compounds in scent profile, log transformed. N = 28 species. p Values are from a 
phylogenetically controlled generalized least‐squares regression model (PGLS) using a phylogeny by Zanne et al. (2014)

F I G U R E  3  The relationship between sugar level and the relative amounts of terpenoids (a) and methyl/ethyl esters in fruit scent (b). (a): 
% terpenoids—relative amount of terpenoids in ripe fruit scent. (b): presence or absence of methyl and ethyl esters in fruit scent. In both: log 
% sugar—percentage sugar in fruit dry weight, log transformed. Y‐axis on the left applies to both plots. N = 27 species. p Values are from a 
single phylogenetically controlled generalized least‐squares regression model (PGLS) using a phylogeny by Zanne et al. (2014). Effects are 
thus independent of phylogeny and one another



8  |     NEVO et al.

wrote the manuscript. DR collected samples. KV wrote the manu‐
script. JAJJ helped in lab work. CAC wrote the manuscript. JUG and 
CR conducted nutritional analyses. MA participated in funding ac‐
quisition, project design, and writing the manuscript.

DATA AVAIL ABILIT Y S TATEMENT

All data used for the analyses are available in Table S1. Raw data from 
which scent variables were collected are fully available in Tables S2 
and S3 in Nevo, Razafimandimby, et al., 2018. R code of statistical 
analysis is available at https​://github.com/omern​evo/Fruit-scent-
and-nutri​tion---across-speci​es-analysis.

ORCID

Omer Nevo   https://orcid.org/0000-0003-3549-4509 

R E FE R E N C E S

Albrecht, J., Hagge, J., Schabo, D. G., Schaefer, H. M., & Farwig, N. (2018). 
Reward regulation in plant‐frugivore networks requires only weak 
cues. Nature Communications, 9(1), 4838. https​://doi.org/10.1038/
s41467-018-07362-z

Beekwilder, J., Alvarez‐Huerta, M., Neef, E., Verstappen, F. W. A., 
Bouwmeester, H. J., & Aharoni, A. (2004). Functional characteriza‐
tion of enzymes forming volatile esters from strawberry and banana. 
Plant Physiology, 135(4), 1865–1878. https​://doi.org/10.1016/j.foodr​
es.2013.01.012

Bolmgren, K., & Eriksson, O. (2005). Fleshy fruits – origins, niche 
shifts, and diversification. Oikos, 109, 255–272. https​://doi.
org/10.1111/j.0030-1299.2005.12663.x

Bolmgren, K., & Eriksson, O. (2010). Seed mass and the evolution 
of fleshy fruits in angiosperms. Oikos, 119, 707–718. https​://doi.
org/10.1111/j.1600-0706.2009.17944.x

Brodie, J. F. (2017). Evolutionary cascades induced by large frugivores. 
Proceedings of the National Academy of Sciences, 114, 11998–12002. 
https​://doi.org/10.1073/pnas.17101​72114​

Cazetta, E., Galetti, M., Rezende, E. L., & Schaefer, H. M. (2012). 
On the reliability of visual communication in vertebrate‐dis‐
persed fruits. Journal of Ecology, 100(1), 277–286. https​://doi.
org/10.1111/j.1365-2745.2011.01901.x

Contreras‐Calderón, J., Calderón‐Jaimes, L., Guerra‐Hernández, E., & 
García‐Villanova, B. (2011). Antioxidant capacity, phenolic content 
and vitamin C in pulp, peel and seed from 24 exotic fruits from 
Colombia. Food Research International, 44(7), 2047–2053. https​://doi.
org/10.1016/j.foodr​es.2010.11.003

Dominy, N. J. (2004). Fruits, fingers, and fermentation: The sensory cues 
available to foraging primates. Integrative and Comparative Biology, 
44(4), 295–303. https​://doi.org/10.1093/icb/44.4.295

Donati, G., Bollen, A., Borgognini‐Tarli, S. M., & Ganzhorn, J. U. 
(2007). Feeding over the 24‐h cycle: Dietary flexibility of cath‐
emeral collared lemurs (Eulemur collaris). Behavioral Ecology 
and Sociobiology, 61(8), 1237–1251. https​://doi.org/10.1007/
s00265-007-0354-x

Donati, G., Santini, L., Eppley, T. M., Arrigo‐Nelson, S. J., Balestri, M., 
Boinski, S., … Ganzhorn, J. U. (2017). Low levels of fruit nitrogen 
as drivers for the evolution of Madagascar's primate communi‐
ties. Scientific Reports, 7, 14406–14406. https​://doi.org/10.1038/
s41598-017-13906-y

Dötterl, S., & Jürgens, A. (2005). Spatial fragrance patterns in flowers 
of Silene latifolia: Lilac compounds as olfactory nectar guides? Plant 
Systematics and Evolution, 255(1–2), 99–109. https​://doi.org/10.1007/
s00606-005-0344-2

Dudley, R. (2000). Evolutionary origins of human alcoholism in pri‐
mate frugivory. Quarterly Review of Biology, 75, 3–15. https​://doi.
org/10.1086/393255

Dudley, R. (2002). Fermenting fruit and the historical ecology of 
ethanol ingestion: Is alcoholism in modern humans an evo‐
lutionary hangover. Addiction, 97, 381–388. https​://doi.
org/10.1046/j.1360-0443.2002.00002.x

Farmer, E. E. (2014). Leaf defence. Oxford, UK: Oxford University Press.
Fox, J., & Weisberg, S. (2011). An R companion to applied regression (2nd 

ed.). Thousand Oaks, CA: Sage.
Galetti, M. (2002). Seed dispersal of mimetic fruits: Parasitism, mutu‐

alism, aposematism or exaptation? In D. J. Levey, W. R. Silva, & M. 
Galetti (Eds.), Seed dispersal and frugivory: Ecology, evolution and con‐
servation (pp. 177–191). Wallingford, UK: Woodhead Publishing.

Galetti, M., Guevara, R., Cortes, M. C., Fadini, R., Von Matter, S., Leite, 
A. B., … Jordano, P. (2013). Functional extinction of birds drives rapid 
evolutionary changes in seed size. Science, 340, 1086–1090. https​://
doi.org/10.1126/scien​ce.1233774

Ganzhorn, J. U., Arrigo‐Nelson, S., Boinski, S., Bollen, A. N., Carrai, V., 
Derby, A., … Wright, P. C. (2009). Possible fruit protein effects on 
primate communities in Madagascar and the Neotropics. PLoS ONE, 
4, e8253. https​://doi.org/10.1371/journ​al.pone.0008253

Goff, S. A., & Klee, H. J. (2006). Plant volatile compounds: Sensory cues 
for health and nutritional value? Science, 311(5762), 815–819.

Herrera, C. M. (1984). Seed dispersal and fitness determinants in wild rose: 
Combined effects of hawthorn, birds, mice, and browsing ungulates. 
Oecologia, 63(3), 386–393. https​://doi.org/10.1007/BF003​90670​

Hodgkison, R., Ayasse, M., Häberlein, C., Schulz, S., Zubaid, A., Mustapha, 
W. A. W., … Kalko, E. K. V. (2013). Fruit bats and bat fruits: The evo‐
lution of fruit scent in relation to the foraging behaviour of bats in 
the New and Old World tropics. Functional Ecology, 27, 1075–1084.  
https​://doi.org/10.1111/1365-2435.12101​

Hodgkison, R., Ayasse, M., Kalko, E. K. V., Häberlein, C., Schulz, S., 
Mustapha, W. A. W., … Kunz, T. H. (2007). Chemical ecology of fruit 
bat foraging behavior in relation to the fruit odors of two species of 
Paleotropical bat‐dispersed figs (Ficus hispida and Ficus scortechinii). 
Journal of Chemical Ecology, 33, 2097–2110. https​://doi.org/10.1007/
s10886-007-9367-1

Howe, H. F., & Estabrook, G. F. (1977). On intraspecific competition for 
avian dispersers in tropical trees. American Naturalist, 111, 817–832. 
https​://doi.org/10.1086/283216

Howe, H. F., & Westley, L. C. (1988). Ecological relationships of plants and 
animals. NewYork, NY: Oxford University Press.

Janson, C. H. (1983). Adaptation of fruit morphology to dispersal 
agents in a Neotropical forest. Science, 219, 187–189. https​://doi.
org/10.1126/scien​ce.219.4581.187

Knudsen, J. T., Eriksson, R., Gershenzon, J., & Ståhl, B. (2006). 
Diversity and distribution of floral scent. Botanical Review; 
Interpreting Botanical Progress, 72(1), 1–120. https​://doi.
org/10.1663/0006-8101(2006)72[1:DADOF​S]2.0.CO;2

Lerdau, M., & Throop, H. L. (2000). Sources of variability in isoprene 
emission and photosynthesis in two species of tropical wet forest 
trees. Biotropica, 32, 670–676.

Lomáscolo, S. B., Levey, D. J., Kimball, R. T., Bolker, B. M., & Alborn, 
H. T. (2010). Dispersers shape fruit diversity in Ficus (Moraceae). 
Proceedings of the National Academy of Sciences, 107(33), 14668–
14672. https​://doi.org/10.1073/pnas.10087​73107​

Lomáscolo, S. B., & Schaefer, H. M. (2010). Signal convergence in fruits: 
A result of selection by frugivores? Journal of Evolutionary Biology, 23, 
614–624. https​://doi.org/10.1111/j.1420-9101.2010.01931.x

https://github.com/omernevo/Fruit-scent-and-nutrition---across-species-analysis
https://github.com/omernevo/Fruit-scent-and-nutrition---across-species-analysis
https://orcid.org/0000-0003-3549-4509
https://orcid.org/0000-0003-3549-4509
https://doi.org/10.1038/s41467-018-07362-z
https://doi.org/10.1038/s41467-018-07362-z
https://doi.org/10.1016/j.foodres.2013.01.012
https://doi.org/10.1016/j.foodres.2013.01.012
https://doi.org/10.1111/j.0030-1299.2005.12663.x
https://doi.org/10.1111/j.0030-1299.2005.12663.x
https://doi.org/10.1111/j.1600-0706.2009.17944.x
https://doi.org/10.1111/j.1600-0706.2009.17944.x
https://doi.org/10.1073/pnas.1710172114
https://doi.org/10.1111/j.1365-2745.2011.01901.x
https://doi.org/10.1111/j.1365-2745.2011.01901.x
https://doi.org/10.1016/j.foodres.2010.11.003
https://doi.org/10.1016/j.foodres.2010.11.003
https://doi.org/10.1093/icb/44.4.295
https://doi.org/10.1007/s00265-007-0354-x
https://doi.org/10.1007/s00265-007-0354-x
https://doi.org/10.1038/s41598-017-13906-y
https://doi.org/10.1038/s41598-017-13906-y
https://doi.org/10.1007/s00606-005-0344-2
https://doi.org/10.1007/s00606-005-0344-2
https://doi.org/10.1086/393255
https://doi.org/10.1086/393255
https://doi.org/10.1046/j.1360-0443.2002.00002.x
https://doi.org/10.1046/j.1360-0443.2002.00002.x
https://doi.org/10.1126/science.1233774
https://doi.org/10.1126/science.1233774
https://doi.org/10.1371/journal.pone.0008253
https://doi.org/10.1007/BF00390670
https://doi.org/10.1111/1365-2435.12101
https://doi.org/10.1007/s10886-007-9367-1
https://doi.org/10.1007/s10886-007-9367-1
https://doi.org/10.1086/283216
https://doi.org/10.1126/science.219.4581.187
https://doi.org/10.1126/science.219.4581.187
https://doi.org/10.1663/0006-8101(2006)72%5B1:DADOFS%5D2.0.CO;2
https://doi.org/10.1663/0006-8101(2006)72%5B1:DADOFS%5D2.0.CO;2
https://doi.org/10.1073/pnas.1008773107
https://doi.org/10.1111/j.1420-9101.2010.01931.x


     |  9NEVO et al.

Lord, J. M. (2002). Have frugivores influenced the evolution of fruit 
traits in New Zealand? In D. J. Levey, W. R. Silva, & M. Galetti (Eds.), 
Seed dispersal and frugivory: Ecology, evolution and conservation (pp. 
55–68). Wallingford, UK: CABI.

Melin, A. D., Nevo, O., Shirasu, M., Williamson, R. E., Garrett, E. C., 
Endo, M., … Kawamura, S. (2019). Fruit scent and observer colour 
vision shape food‐selection strategies in wild capuchin monkeys. 
Nature Communications, 10(1), 2407. https​://doi.org/10.1038/
s41467-019-10250-9

Nevo, O., & Ayasse, M. (2019). Fruit scent: Biochemistry, ecological 
function, and evolution. In J.‐M. Merillon, & K. G. Ramawat (Eds.), 
Co‐evolution of secondary metabolites (pp. 1–23). Cham, Switzerland: 
Springer International Publishing.

Nevo, O., Garri, R. O., Hernandez Salazar, L. T., Schulz, S., Heymann, E. 
W., Ayasse, M., & Laska, M. (2015). Chemical recognition of fruit 
ripeness in spider monkeys (Ateles geoffroyi). Scientific Reports, 5, 
14895–14895. https​://doi.org/10.1038/srep1​4895

Nevo, O., & Heymann, E. W. (2015). Led by the nose: Olfaction in primate 
feeding ecology. Evolutionary Anthropology, 24, 137–148. https​://doi.
org/10.1002/evan.21458​

Nevo, O., Heymann, E. W., Schulz, S., & Ayasse, M. (2016). Fruit odor as 
a ripeness signal for seed‐dispersing primates? A case study on four 
Neotropical plant species. Journal of Chemical Ecology, 42, 323–328. 
https​://doi.org/10.1007/s10886-016-0687-x

Nevo, O., Razafimandimby, D., Jeffrey, J. A. J., Schulz, S., & Ayasse, M. (2018). 
Fruit scent as an evolved signal to primate seed dispersal. Science 
Advances, 4, eaat4871. https​://doi.org/10.1126/sciadv.aat4871

Nevo, O., & Valenta, K. (2018). The ecology and evolution of fruit 
odor: Implications for primate seed dispersal. International 
Journal of Primatology, 39(3), 338–355. https​://doi.org/10.1007/
s10764-018-0021-2

Nevo, O., Valenta, K., Razafimandimby, D., Melin, A. D., Ayasse, M., 
& Chapman, C. A. (2018). Frugivores and the evolution of fruit 
colour. Biology Letters, 14, 20180377. https​://doi.org/10.1098/
rsbl.2018.0377

Nevo, O., Valenta, K., Tevlin, A. G., Omeja, P., Styler, S. A., Jackson, D. 
J., … Ayasse, M. (2017). Fruit defence syndromes: The independent 
evolution of mechanical and chemical defences. Evolutionary Ecology, 
31, 913–923. https​://doi.org/10.1007/s10682-017-9919-y

Pagel, M. (1999). Inferring the historical patterns of biological evolution. 
Nature, 401, 877–884. https​://doi.org/10.1038/44766​

Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of phyloge‐
netics and evolution in R language. Bioinformatics, 20, 289–290. https​
://doi.org/10.1093/bioin​forma​tics/btg412

Pfeiffer, M., Huttenlocher, H., & Ayasse, M. (2010). Myrmecochorous 
plants use chemical mimicry to cheat seed‐dispersing ants: Chemical 
mimicry in myrmecochory. Functional Ecology, 24(3), 545–555. https​
://doi.org/10.1111/j.1365-2435.2009.01661.x

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team (2017). 
nlme: Linear and nonlinear mixed effects models. R package version 
3.1‐131.

R Core Team (2014). R: A language and environment for statistical com‐
puting. Vienna, Austria: R Foundation for Statistical Computing. 
Retrieved from http://www.r-proje​ct.org/

Raguso, R. A. (2008). Wake up and smell the roses: The ecology and 
evolution of floral scent. Annual Review of Ecology, Evolution, and 
Systematics, 39, 549–569. https​://doi.org/10.1146/annur​ev.ecols​
ys.38.091206.095601

Revell, L. J. (2012). Phytools: An R package for phylogenetic com‐
parative biology (and other things). Methods in Ecology and 
Evolution/British Ecological Society, 3, 217–223. https​://doi.
org/10.1111/j.2041-210X.2011.00169.x

Sánchez, F., Korine, C., Pinshow, B., & Dudley, R. (2004). The possi‐
ble roles of ethanol in the relationship between plants and frugi‐
vores: First experiments with Egyptian fruit bats. Integrative and 
Comparative Biology, 44(4), 290–294. https​://doi.org/10.1093/
icb/44.4.290

Sánchez, F., Korine, C., Steeghs, M., Laarhoven, L.‐J., Cristescu, S. M., 
Harren, F. J. M., … Pinshow, B. (2006). Ethanol and methanol as pos‐
sible odor cues for Egyptian fruit bats (Rousettus aegyptiacus). Journal 
of Chemical Ecology, 32(6), 1289–1300. https​://doi.org/10.1007/
s10886-006-9085-0

Schaefer, H. M., & Braun, J. (2009). Reliable cues and signals of fruit 
quality are contingent on the habitat in black elder (Sambucus nigra). 
Ecology, 90(6), 1564–1573.

Schaefer, H. M., & Ruxton, G. D. (2011). Animal‐plant communication. 
Oxford, UK: Oxford University Press.

Schaefer, H. M., Valido, A., & Jordano, P. (2014). Birds see the true colours 
of fruits to live off the fat of the land. Proceedings of the Royal Society 
B: Biological Sciences, 281, 20132516. https​://doi.org/10.1098/
rspb.2013.2516

Schiestl, F. P. (2015). Ecology and evolution of floral volatile‐ mediated 
information transfer in plants. New Phytologist, 206, 571–577. https​
://doi.org/10.1111/nph.13243​

Tom‐Dery, D., Eller, F., Jensen, K., & Reisdorff, C. (2018). Effects of ele‐
vated carbon dioxide and climate change on biomass and nutritive 
value of Kyasuwa (Cenchrus pedicellatus Trin.). Journal of Applied 
Botany and Food Quality, 91, 88–95.

Unsicker, S. B., Kunert, G., & Gershenzon, J. (2009). Protective per‐
fumes: The role of vegetative volatiles in plant defense against her‐
bivores. Current Opinion in Plant Biology, 12(4), 479–485. https​://doi.
org/10.1016/j.pbi.2009.04.001

Valenta, K., Brown, K. A., Rafaliarison, R. R., Styler, S. A., Jackson, D., 
Lehman, S. M., … Melin, A. D. (2015). Sensory integration during for‐
aging: The importance of fruit hardness, colour, and odour to brown 
lemurs. Behavioral Ecology and Sociobiology, 69(11), 1855–1865. https​
://doi.org/10.1007/s00265-015-1998-6

Valenta, K., Burke, R. J., Styler, S. A., Jackson, D. A., Melin, A. D., & 
Lehman, S. M. (2013). Colour and odour drive fruit selection and seed 
dispersal by mouse lemurs. Scientific Reports, 3, 2424–2424. https​://
doi.org/10.1038/srep0​2424

Valenta, K., Kalbitzer, U., Razafimandimby, D., Omeja, P., Ayasse, 
M., Chapman, C. A., & Nevo, O. (2018). The evolution of fruit 
colour: Phylogeny, abiotic factors and the role of mutual‐
ists. Scientific Reports, 8(1), 14302. https​://doi.org/10.1038/
s41598-018-32604-x

Valenta, K., & Melin, A. D. (2012). Protein limitation explains variation 
in primate colour vision phenotypes: A unified model for the evolu‐
tion of primate trichromatic vision. In M.‐D. Garcia (Ed.), Zoology (pp. 
29–46). Rijeka, Croatia: InTech.

Valenta, K., Nevo, O., Martel, C., & Chapman, C. A. (2017). Plant attrac‐
tants: Integrating insights from pollination and seed dispersal ecol‐
ogy. Evolutionary Ecology, 31(2), 249–267. https​://doi.org/10.1007/
s10682-016-9870-3

Valido, A., Schaefer, H. M., & Jordano, P. (2011). Colour, design 
and reward: Phenotypic integration of fleshy fruit displays. 
Journal of Evolutionary Biology, 24(4), 751–760. https​://doi.
org/10.1111/j.1420-9101.2010.02206.x

Widhalm, J. R., & Dudareva, N. (2015). A familiar ring to it: Biosynthesis 
of plant benzoic acids. Molecular Plant, 8(1), 83–97. https​://doi.
org/10.1016/j.molp.2014.12.001

Wilson, D. A., Stevenson, R. J., & Stevenson, R. J. (2006). Learning to 
smell: Olfactory perception from neurobiology to behavior. Baltimore, 
MD: JHU Press.

https://doi.org/10.1038/s41467-019-10250-9
https://doi.org/10.1038/s41467-019-10250-9
https://doi.org/10.1038/srep14895
https://doi.org/10.1002/evan.21458
https://doi.org/10.1002/evan.21458
https://doi.org/10.1007/s10886-016-0687-x
https://doi.org/10.1126/sciadv.aat4871
https://doi.org/10.1007/s10764-018-0021-2
https://doi.org/10.1007/s10764-018-0021-2
https://doi.org/10.1098/rsbl.2018.0377
https://doi.org/10.1098/rsbl.2018.0377
https://doi.org/10.1007/s10682-017-9919-y
https://doi.org/10.1038/44766
https://doi.org/10.1093/bioinformatics/btg412
https://doi.org/10.1093/bioinformatics/btg412
https://doi.org/10.1111/j.1365-2435.2009.01661.x
https://doi.org/10.1111/j.1365-2435.2009.01661.x
http://www.r-project.org/
https://doi.org/10.1146/annurev.ecolsys.38.091206.095601
https://doi.org/10.1146/annurev.ecolsys.38.091206.095601
https://doi.org/10.1111/j.2041-210X.2011.00169.x
https://doi.org/10.1111/j.2041-210X.2011.00169.x
https://doi.org/10.1093/icb/44.4.290
https://doi.org/10.1093/icb/44.4.290
https://doi.org/10.1007/s10886-006-9085-0
https://doi.org/10.1007/s10886-006-9085-0
https://doi.org/10.1098/rspb.2013.2516
https://doi.org/10.1098/rspb.2013.2516
https://doi.org/10.1111/nph.13243
https://doi.org/10.1111/nph.13243
https://doi.org/10.1016/j.pbi.2009.04.001
https://doi.org/10.1016/j.pbi.2009.04.001
https://doi.org/10.1007/s00265-015-1998-6
https://doi.org/10.1007/s00265-015-1998-6
https://doi.org/10.1038/srep02424
https://doi.org/10.1038/srep02424
https://doi.org/10.1038/s41598-018-32604-x
https://doi.org/10.1038/s41598-018-32604-x
https://doi.org/10.1007/s10682-016-9870-3
https://doi.org/10.1007/s10682-016-9870-3
https://doi.org/10.1111/j.1420-9101.2010.02206.x
https://doi.org/10.1111/j.1420-9101.2010.02206.x
https://doi.org/10.1016/j.molp.2014.12.001
https://doi.org/10.1016/j.molp.2014.12.001


10  |     NEVO et al.

Zanne, A. E., Tank, D. C., Cornwell, W. K., Eastman, J. M., Smith, S. A., 
FitzJohn, R. G., … Beaulieu, J. M. (2014). Three keys to the radia‐
tion of angiosperms into freezing environments. Nature, 506(7486), 
89–92.

SUPPORTING INFORMATION

Additional supporting information may be found online in the 
Supporting Information section at the end of the article.  

How to cite this article: Nevo O, Razafimandimby D, Valenta 
K, et al. Signal and reward in wild fleshy fruits: Does fruit 
scent predict nutrient content? Ecol Evol. 2019;00:1–10.  
https​://doi.org/10.1002/ece3.5573

https://doi.org/10.1002/ece3.5573

