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Abstract

The term ‘smart forest’ is not yet common, but the proliferation of sensors, algorithms, and technocentric thinking in
conservation, as in most other aspects of our lives, suggests we are at the brink of this evolution. While there has been some
critical discussion about the value of using smart technology in conservation, a holistic discussion about the broader
technological, social, and economic interactions involved with using big data, sensors, artificial intelligence, and global
corporations is largely missing. Here, we explore the pitfalls that are useful to consider as forests are gradually converted
to technological sites of data production for optimized biodiversity conservation and are consequently incorporated in the
digital economy. We consider who are the enablers of the technologically enhanced forests and how the gradual operation-
alization of smart forests will impact the traditional stakeholders of conservation. We also look at the implications of
carpeting forests with sensors and the type of questions that will be encouraged. To contextualize our arguments, we
provide examples from our work in Kibale National Park, Uganda which hosts the one of the longest continuously running
research field station in Africa.
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Introduction . : . o
In the digital economy, data is a capital which is

worth finding, creating, accumulating, and trading.
Capitalism in this new digital form is also always looking

Data is the foundational form of capital in the digital
economy, underpinning the technological transforma-

tion of everyday objects and environments to make
them ‘smart’ (Kitchin, 2014). This is evidenced by the
flurry of new terminology with the ‘smart’ prefix, such
as, smart cities and smart homes. The term ‘smart’ is
often used as a shorthand to indicate the presence of
sensors which generate a constant stream of data and
possibly make some autonomous decisions based on
the patterns in the data. Collection and circulation of
data is a basic premise of data currency driving corpo-
rations to devise new ways of extracting all data, from all
sources, by any means possible (Fourcade & Healy,
2017). The transformation of data to a new form of cur-
rency means that data by itself is valuable and value-
creating (Arvidsson, 2016; Roderick, 2014; Srnicek,
2017). Data is collected with the belief that it will have
use, and thus value, at some point in time, if not today.

for new places and domains to exploit for data capture
(Harvey, 2014). A potential, lucrative domain involves
tropical forests. Covering 7% of the world’s land
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surface, tropical forests account for 60% of the world’s
biodiversity (Bradshaw et al., 2009). These forests are
increasingly threatened. Less than half of the world’s
tropical forests remain (Pimm et al., 2014) and between
2000 and 2012, globally forest were being lost at 3%
annually (Hansen et al., 2013). The imperative of pro-
tecting the remaining biodiversity presents the perfect
justification to ‘optimize’ biodiversity conservation by
using smart sensors to collect data and automate pro-
cesses. The premise is that with a constant stream of
multidimensional data and autonomous decision
making, the solutions are limited only by our imagina-
tion. As the narrative of a conservation crisis needing
technological salvation gains pace, there is simulta-
neously a growing concern about ‘techno-fix’ thinking
in conservation (Arts et al., 2015; Gabrys, 2016, 2020;
Joppa, 2015). Current trends of creating technologized
sites of data production and their purported advantages
in increasing management efficiency is reflected in the
conservation literature with the trickling stream of
articles with variations of the moniker ‘smart forest’
(Bakker & Ritts, 2018; Gabrys, 2020; Lyubenova et al.,
2015). As with all technological creations there is the
potential for large gains to be made for conservation,
but there are also dangers. How the balance between
gains and losses will play out for conservation, will
depend on how programs implement the use of technol-
ogy and consider the value of alternatives.

In this paper, we focus on the pitfalls of the increased
use of sensors and algorithms for conservation of tropical
forests which are characterized by dense vegetation and
are often bordered by human settlements. While the gaze
of the digital economy on biodiversity conservation have
been fleeting for now, there is little doubt it will gain trac-
tion. Currently, technological implementations are
bottom-up, led mostly by researchers, rather than top
down where they are mandated by governments, institu-
tions, and funding organizations. However, the enamor of
optimization has driven calls for investment opportunities
by entities, such as the World Bank, to coax the remaining
biodiversity to be more productive (Tembon, 2019). Thus,
a more critical discussion is warranted that centers smart
forests amongst the larger ecosystem of digital economy
and the neo-liberal stresses of optimization and
privatization.

While there are real advantages for conservation in
acquiring more data and automating processes, critical
considerations of how the data is collected, stored, and
analyzed and its impacts from ecological, economic,
social, and policy perspectives are largely lacking. To
situate smart tropical forests in the larger digital econo-
my we look at three questions; What are the impacts of
placing smart technology in forests in terms of conser-
vation science research? Who are likely to be the drivers
of this techno-movement? And, what are the

implications for the traditional stakeholders of conser-
vation which include local communities, researchers, and
governments? We provide examples from our field site in
Kibale National Park, Uganda (herecafter Kibale) to
contextualize the arguments. Kibale is one of the longest
continuously running forest research field station in
Africa and provides a good case study as research pro-
tocols and costs have been established over decades and
we have worked on forest conservation in the park for
over 30 years. Our focus is on contextualizing the socio-
economic environment which influences techno-centric
smart forest interventions and identifying the actors
involved in this transformation where use of sensors is
widespread, and algorithms are entrusted with decision
making. We provide reflections to guide tropical forest
conservation researchers and institutions who are con-
templating increased deployment of sensors.

The Cost Effectiveness of Sensors in
Conservation Science

The use of sensors in conservation science is not new.
Common examples include satellites, weather stations,
drones, and camera traps. The key feature for these ‘tra-
ditional’ technological deployments is that the data
processing and decision making is done with a human
in the loop and at a pace that allows time for delibera-
tion. Also, sensors such as weather stations and camera
traps are placed discretely inside the forest to collect
specific data obtained when the scientist is not present.
Both these characteristics are evolving as sensors have
more diverse functions and are smarter. Furthermore,
with smart sensors, the analysis and decision-making
can be delegated to black box algorithms, giving rise
to ‘conservation by algorithm’(Adams, 2019). An exam-
ple of this is using Al to identify species or individuals
based on camera traps; a process that can evaluate
images in a fraction of the time a human observer can
(Guo et al., 2020; Norouzzadeh et al., 2018). In this sec-
tion, we chart how ‘traditional’ sensors and their data
are being appropriated for smart forests.

One of the main challenges for researchers and manag-
ers is to develop cost-efficient approaches for ecological
monitoring (Newey et al., 2015; Yoccoz et al., 2001). In
high-income countries, where the salaries of researchers
and technicians are high, this challenge has led to advo-
cating for the use of sensors. However, this reasoning does
not necessarily apply to tropical forests which predomi-
nantly occur in low-income countries and have high pop-
ulation densities around the forests. Here it is possible to
provide local people with good salaries at a fraction of the
cost of what it would be in high-income countries. From
this perspective, sensors with built-in planned obsolescent
and high maintenance costs, become an expensive
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strategy. The cost of sending a technician to a remote
tropical forest site for a minor adjustment or repair, will
often be an order of magnitude higher in low-income
countries and thus it can be prohibitive.

It is important that the academic community does not
adopt a perspective that the only way to obtain high-
quality data to address conservation questions is to use
the approaches that work in high-income or high-tech
countries. For example, camera traps have become a
popular means to estimate density, species richness,
and occupancy and detection rates (Kays et al., 2020;
Linkie et al., 2013; O’Connell et al., 2011). A simpler,
but much more labor-intensive way to answer many of
the same questions that camera traps are used for, are
tracking stations (Keeping & Pelletier, 2014). We esti-
mated the relative costs of a camera trap versus a track-
ing station study using salary costs from Kibale. Using
the number of cameras recommended for detecting rare
species (Kays et al., 2020) and selecting a mid-range
camera (Newey et al., 2015) this approach would be
six times more expensive than the labor-intensive track-
ing station method.

Additionally, with respect to the quality of informa-
tion collected or decisions made, people tend to trust
machines even if the error rate is comparable or even
higher than humans (Merritt et al., 2013). Thus, the
implicit assumption that smart sensors will be more
accurate, cost-efficient, and objective are debatable.
The detriments caused by trusting autonomous decisions
can be more severe than random or systematic errors
associated with instruments.

Sensors are efficient at monitoring what they are
designed to sense, but they may not provide needed con-
text. For example, drones can monitor if canopy trees
flower and fruit, but they will not record when small
seeds are aborted. Someone collecting data from under
a tree will note such events. Similarly, by using camera
traps one could document a population decline in a spe-
cies, but not be able to document the cause. If the cause
was a disease outbreak, a person monitoring tracking
stations would smell the rotting carcasses and likely
identify the cause.

Sensors can stress animals. This is counter to the
goals of conservation efforts as stress can negatively
affect reproduction (Ziegler et al., 1995). For example,
drones have been documented to cause physiological
stress to mammals and birds (Ditmer et al., 2015;
Rebolo-Ifran et al., 2019; Vas et al., 2015). Humans per-
ceive camera traps as being silent and unnoticeable, but
there is clear evidence that they can be detected by ani-
mals (Meek et al., 2014). A variety of birds and mam-
mals exhibited behaviors indicating they notice camera
traps (Meek et al., 2016; Séquin et al., 2003). Thus, the
possibility exists that camera traps may stress some spe-
cies and provide data about stress behavior rather than

about their natural behavior. Consequently, as algo-
rithms are trained on camera trap images, the patterns
the systems learn are biased.

There are many situations where sensors can record
information needed for tropical forest conservation that
a human observer cannot obtain or that it would be
impractical for people to collect. Sensors can detect phe-
nomenon that are difficult to detect by human senses
(e.g., monitoring elephant calls (Garstang, 2004; Wrege
et al., 2017 )) and can collect the data 24 hours a day
(e.g., to determine feeding visitation of nocturnal frugi-
vores (Rivas-Romero & Soto-Shoender, 2015)). Sensors
can also provide data that would be impossible for
people to collect. For example, if information is
needed on the behavior and range use of animals that
avoid human observers or range over areas too large for
people to monitor, animals can be captured and telem-
etry equipment can be attached to them (e.g., the home
range of a honey badger encompasses hundreds of km?
(Begg et al., 2005) and in the forest these animals are
very secretive). Such telemetry equipment can also mon-
itor data that people cannot record (e.g., heart rate
(Dechmann et al., 2011), body temperature (Marvin
et al., 2016)). Another example is satellite technology,
which can be used to assess forest dynamics across the
range of electromagnetic spectrum which is much
broader than what can be sensed by humans.
Productivity and carbon stocks can be assessed and
monitored on large spatial scales that are well beyond
what is possible using traditional methods (Goetz et al.,
2009; Hansen et al., 2013). Drones are gaining popular-
ity for ecological and conservation and can be used to
assess the abundance of canopy gaps or the presence of
chimpanzee nests over large areas (Bonnin et al., 2018;
Getzin et al., 2012) or describing the phenology of iden-
tifiable trees across a landscape (Park et al., 2019). The
use of lidar from drones is a particularly promising
technology to assess habitat structure and estimate bio-
diversity (Simonson et al., 2014).

The Actors Enabling the Technological
Drive

The significant investments required to design, build,
deploy, and maintain the infrastructure underlying
smart environments has put corporations in the driving
seat of the digital economy. This in turn has given tech
monopolies unprecedented influence in private, social,
political, and economic spheres (Kang & McCabe,
2020). Consequently, ‘smart’ environments, have been
driven by a corporate-led free-market blueprint. The
lure of capturing as much data capital as possible with
the hope of deriving value from it has proven to be of
interest for tech corporations. As the primary provider
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of infrastructure, tech corporations are “driven by the
perpetual cycle of capital accumulation, which in turn
drives capital to construct and rely upon a universe in
which everything is made of data” (Sadowski, 2019).
Driven by the extraction imperative, the smart forests
also represent a hitherto untapped data domain.
Tropical forests provide a particularly lucrative environ-
ment as they are often bordered by people who have thus
far not been a part of the digital economy. Thus, smart
forests brings into its fold not only the forest, but also the
surrounding communities. While the push for smart for-
ests provides an impetus to expand telecommunication
infrastructure, from the business perspective, it is also a
unique opportunity to derive more and new types of
behavior data, such as, human-forest interactions.

The tech infrastructure required to operationalize
smart forests are mostly provided by tech corporations
putting them in the driving seat this frontier in conser-
vation. As the capabilities of sensors and algorithms are
increasing, so is the potential for corporations to influ-
ence conservation science and policy. This growing inter-
est is illustrated by the increase in the number of grants
supported by corporations to employ new technological
solutions in biodiversity conservation (Gabrys, 2020;
https://www.microsoft.com/en-us/ai/ai-for-earth-
grants). Ideologues surrounding automation, optimiza-
tion, and securitization of spaces common in smart envi-
ronments are also manifesting themselves in the
conservation dialogue as forests are increasingly per-
ceived as data infrastructure (Gabrys, 2020).

While there has been previous engagement of corpo-
rations with conservation issues, they have primarily
been in the form of philanthropic activities or social
impact investments. The untapped data source of forests
potentially provides an answer to the question, ‘What
does nature conservation offer as motivation for the
technology industry to get seriously involved in building
tools to conserve nature?” (Joppa, 2015). While the inten-
tions of building smart forests may be well meaning,
there will be consequences in terms of the conflicts in
goals and values between various stakeholders, similar
to what have been witnessed in the smart cities (Calzada,
2020). Thus, while corporations engage in philanthropic
activities, their primary business relies upon profits from
their products and services. Thus, smart forest introdu-
ces a new actor, corporations, to the equation which
thus far primarily involved local communities, non-
profits, researchers, and governments.

As a result, it is important for existing stakeholders to
carefully evaluate if the information gained through
smart forest implementations is worth the cost. This
evaluation should consider the cost to maintain and
run the sensor system in remote tropical forests and to
upgrade the sensors and software as new versions
become available. Project abandonment, even when the

project is backed by large corporations is also not
unprecedented. For example, Google affiliated
Sidewalks lab abandoned visions to transform
Toronto’s waterfront into a smart city after years of
planning (Leyland, 2020). Thus, comprehensive project
sustainability evaluation frameworks need to be devel-
oped as the consequences of sensor abandonment in the
forest can have significant impacts on biodiversity. It
should also consider social costs and lost opportunity
costs as funds could be used in other ways.

In the techno-fix view, technology is perceived as a
panacea with incredible agency to solve social and envi-
ronmental problems (Abdelnour, 2015; Huesemann &
Huesemann, 2011; Morozov, 2013). Consequently, in
the face of prolonged budgetary cuts to environmental
funding, it is easy for tech companies or government
agencies to call for technological interventions to over-
come the impacts of environmental austerity. For exam-
ple, rather than measuring carbon stocks, forest
productivity, or food availability through tree measure-
ments, calls are put forward to assess these variables
using indices derived from satellite imagery. Verifying
these indices accurately portray the variable of interest
must be done prior to their adoption, as without proper
contextual adjustments, some indices have been shown
to be imprecise (Gautam et al., 2019). While technolog-
ical interventions in the name of austerity can, when
adequately tested, fulfil the needs of environmental mon-
itoring, it undercuts the aims of poverty alleviation and
involvement of local communities in conservation and
may exacerbate marginalization (Kull et al., 2007;
Morrissey, 2012). Instead, it adopts a neo-liberal per-
spective that involvement of private stakeholders will
optimize the use of economic resources and provide
favourable outcomes, setting in motion lobbying efforts
for further austerity measures which in turn benefit the
private enterprises (Fletcher et al., 2014).

Further, the lack of telecommunication and electricity
infrastructure in many tropical forests will make the
smart forest implementations challenging. However,
this will likely be seen as an opportunity by corpora-
tions. For example, Microsoft has developed a modular
datacenter capable of quick deployment in areas with
adverse condition and haphazard communication infra-
structure (Karagounis, 2020). While it can be argued
that the development of such infrastructure can help
local areas, it is unlikely that local communities can
afford to use or maintain it without institutional support
from local and national governments. On the other
hand, implementing smart forest opens the opportunity
to build capacity in the local communities to run and
maintain the technological infrastructure thus accelerat-
ing and supplementing government initiatives. Hence,
the opportunities should not be overlooked without con-
sideration for the sake of tradition. There is a balancing
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act required to ensure that we do not end up with ‘smart’
forests surrounded by tech deprived communities or
with scenarios where the tech becomes too pervasive
and its side effects, such as high-power electricity lights
and sounds, interferes with the flora and fauna.

A final consideration with respect to the enablers of
smart forests is that the technology developed in the
western world is often ported over to the rest of the
world with little regard for suitability in terms of appli-
cation, assumptions encoded in the systems, and consid-
eration of foreign economies and culture. As a result,
there is growing concern about ‘algorithmic coloniza-
tion’ (Birhane, 2020). Even though data-driven Al
approaches are often perceived as objective, researchers
have shown that implicit bias is encoded in the system
and present in the datasets used to train the algorithms
(Howard & Borenstein, 2018). These biases can lead to a
slew of problems including implications for communities
and incorrect ecological inferences (Galaz & Mouazen,
2017). Thus, it is important to reflect upon who builds
the system, where, using what datasets, and for what
purpose.

Data Implications for Conservation
Science

In the digital economy, data is money. In the race to
collect more data with the hope that they will be useful
in the future, it is important to consider whether the
data derived from smart forests will be sufficiently reli-
able to use in informing of conservation plans. For
example, the use of Al-based species identification is
increasingly common (Guo et al., 2020; Joly et al.,
2018). Al systems rely on data to make decisions and
drawing on large data sources increases their pattern
learning ability. Drawing on existing data sources,
such algorithms, can misidentify rare species or those
not thought to be in an area (Wearn et al., 2019). In
conservation, rare events are extremely important. Even
though sensors can monitor situations continuously
they rely on algorithms trained on existing datasets to
match patterns and make decisions. Thus, when a new
species (for the dataset/algorithm) is encountered, the
algorithm can wrongly categorize them. In such situa-
tions, regular human monitoring and retraining using
updated datasets is needed. Similarly, recent research
suggests that even when deploying many camera traps
in a small area, detection and capture rates are highly
variable across space and time (Kolowski et al., 2021).
This suggest camera trap data can be unreliable to
address many conservation questions. Thus, while sen-
sors are useful for detecting species that avoid human
detection, over-reliance on sensors and algorithms
could shift the focus away from ecologically important

events which require scientists to spend considerable
field time to questions that are easily quantifiable.
Further, use of sensors also creates an imperative to
collect as much data as possible before framing clear
questions (Succi & Coveney, 2019). However, well
framed questions backed by small, purposefully
collected datasets can help answer important questions
(Faraway & Augustin, 2018; Xu et al., 2020).

Data does not stand on its own and needs to be con-
textualized to make it useful. This challenges the notion
that unbridled data flow will lead to a situation in which
our imaginations, rather than data and technology, will
set the limits for solutions and scientific insights. People
who work with datasets do not perceive data to be pli-
able for a variety of scenarios. Instead, they perceive
data as something crafted for a specific task in a specific
context (Madsen, 2018). Thus, data, regardless of the
source needs to be put into context, analyzed, and nar-
rated by the appropriate entities to be useful (Dourish &
Gomez, 2018). Without careful planning, curation, and
contextualization; data keeps accumulating in data
stores and cannot be used most appropriately. For con-
servation planning, it often takes considerable effort and
time in the field, interacting with the local communities,
to contextualize data. For example, spikes in poaching
incidents despite conservation efforts may point to lack
of foresight in the overall conservation plans which is
achieving the aim of increasing wealth for local commu-
nities, but not making available alternate desirable nutri-
tion sources in the vicinity resulting in bushmeat hunting
(Bortolamiol et al., Submitted).

A series of concerns are also associated with data
security. Sensors placed within the forest for tracking
animal, habitat quality, or environmental activity to
aid in conservation can provide valuable information
to poachers. Global trade in wild animals and plants is
worth up to $350 billion annually (Sosnowski et al.,
2019) and illegal wildlife trade has become the fourth
largest international organized crime (Wasser et al.,
2015). For example, since 2007, illegal ivory trade has
been estimated to have doubled (Bennett, 2015) and
forest elephant populations declined by 62% between
2002 and 2011 (Maisels et al., 2013). The data collected
from sensors used by conservation scientists is valuable
and attempts will be made to gain access to them. In
some cases, the mere presence of sensors may signal
areas of importance. This problem will be exacerbated
with internet-connected sensors. These data streams and
data stores can be hacked by the cartels who coordinate
large scale illegal wildlife trade. Illegal wildlife trade is
rife on the internet and getting access to fine-grained
ground level data will bolster the market (Xiao & Xu,
2016).

Another important question that should be asked by
all actors is, who will bear the cost for data collection,
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proofing, and metadata organization, in addition to the
costs associated with sensor maintenance and upgrad-
ing? Currently, most efforts are funded by researchers
or conservation agencies, with governments from coun-
tries with tropical forests often viewing the sensors and
associated data to be luxuries that they cannot afford as
funding is often insufficient for needed day-to-day activ-
ities (Charles Tumwesigye - Uganda Wildlife Authority
personal communications). This is not a desirable place
for the field to be in as researchers and NGOs are typ-
ically supported by short-term grants and the value
of using sensors is often derived from collecting long-
term data.

Users should be concerned about the general willing-
ness to share information, particularly if it is perceived
by the people who purchase the sensors and pay for their
establishment that others are unfairly profiting from
their efforts. Setting-up central data repositories are
challenging given the cost and complexity involved in
collating and indexing the wide variety of datasets. For
example, despite efforts to share bioinformatic data
(https://www.coalition-s.org/), little data sharing has
occurred (Arts et al.,, 2015). On the other hand,
Movebank (www.movebank.org) has seen greater
uptake and host movement data from a wide variety of
sensors. In the absence of a central open data repository,
data is locked inside silos negating the advantages of
algorithms to gain insights based on mining large data
repositories (Bakker & Ritts, 2018). If the corporations
collecting and storing the data, such as is done with
some areal imagery, it may be that the data will be
locked behind paywalls, if made available at all.
Scientists may have to buy access to the data, most prob-
ably in the form of subscriptions or a pay-per-use model,
similar to accessing journal articles. However, any data
sharing by corporations is unlikely at all given the secre-
cy in which algorithms and data is shrouded in other
aspects of the digital economy (O’Neil, 2016; Pasquale,
2015). Thus, data ownership and custodianship are sig-
nificant barriers to achieving a future where data-driven
decisions are egalitarian.

Impacts on Local Communities

In addition to the already mentioned benefit provided by
the smart forest movement of building infrastructure
and collecting new forms of dataset, there are other
opportunities that can become available if carefully
plan and implemented. For example, to ensure scalabil-
ity, maintainability, affordability, and inter-operability,
open-source hardware and software can be developed
and adopted to operationalize smart forests. This also
opens the possibility of developing highly skilled person-
nel in the local communities who can take stewardship of
the projects. However, the guidelines and best practices

should be debated, discussed with local communities,
and set forth as the risks of improper implementation
and data misuse are a significant concern.

With all conservation projects, it is important that the
hard-earned funds be spent in a fashion that best facil-
itates both science and conservation. When conservation
dollars are spent on sensors, funds are going to corpo-
rations, typically in high-income countries. In contrast,
when a local villager living close to the conservation
efforts is hired to collect data, funds go to the commu-
nity and engender a positive attitude towards conserva-
tion efforts as it ameliorates some of the negative
impacts of living next to protected forests (Kirumira
et al., 2019; Sarkar et al., 2019).

If researchers adopt the perspective that high-tech
approaches are the only way to get high quality data,
this will result in local community members currently
employed to collect data losing their jobs to sensors.
Even if local employees are trained in the use of high-
tech approaches (e.g., camera traps for density estimates,
drones for phenology monitoring) by their very nature
these technologies require less field time and thus renum-
erations to the community will decline. Thus, unless
alternatives sources of employment are provided, years
of progress in providing conservation-based employ-
ment for the local communities can be lost.
Conservation calls for human involvement to build com-
munity trust and efforts benefit from positive relation-
ships with affected communities. It takes years and
perhaps decades for conservation scientists to gain com-
munity trust. If employing sensors means that the scien-
tist will be in the field for less time, it will hinder
conservation efforts. Furthermore, training students in
conservation practice involves education in both the bio-
logical and social perspectives. This requires understand-
ing the local community’s culture, needs, and desires,
which takes time in the field. One could argue that
using sensors will provide researchers more time to inter-
act with the community, but this has to be deliberate
choice as with the use of sensors there is an incentive
for researchers spend less time in the field and more time
at their home universities. If care is not taken, there is a
risk of ‘deskilling” both conservation and natural history
as we rely on sensors to collect data needed to address
narrowly defined questions.

In current implementations of technocentric thinking
in conservation, consultations and opt-ins from the com-
munity are largely missing. As conservation manage-
ment get bound up in black boxes and controlled
remotely, it can lead to situations where the people
who are implementing activities are not acquainted
with the ground realities. If not carefully managed, this
can result in rigid, formal, and top-down management of
conservation with little local accountability increasing
government and corporate power and control (Barns
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et al., 2017; Gabrys, 2020; Shelton & Lodato, 2019).
Thus, for successful implementation consultations, opt-
ins, and knowledge exchange are required from all stake
holders including rangers, forest officials, and commu-
nities. These issues are in addition to the diversion of
conservation funds from local communities mentioned
above. Thus, unless carefully coordinated, smart forests
have the potential to reverse the decades of efforts put in
to make conservation management plans equitable for
local communities. If researchers do not spend time in
the community, there is the real risk that the community
will not understand why some scientists intervene to
make their life harder, while protecting animals. In
early years of setting up the research field station in
Kibale (1980s), communication with the local communi-
ty was limited and the community thought that research-
ers were prospecting for gold. Because why else would
they spend so much time in the forest and not leave with
visible goods.

Ensuring security is one of the dominant arguments
put forward in support of smart cities (Vanolo, 2014;
Wiig, 2018). In fact, the data extraction imperative of
the digital economy makes surveillance a central activity
(Zuboff, 2015). Similarly, deployment of surveillance
technology is emerging as a central concept in tech-
moderated conservation (Adams, 2019; Sandbrook,
2015). Having protected areas that are managed to the
degree where fires can be quickly discovered from satel-
lites, problem animals can be monitored so that when
they approach the boundary steps can be taken to pre-
vent human-wildlife conflict, and patrol efforts can be
spatially tracked is of great conservation value and is
being implemented (https://earthranger.com/, Xu et al.,
2020). This sort of information can be made available to
managers in real-time and can enhance security. In a
situation where, managers are trying to protect extreme-
ly endangered species, the monitoring systems are donat-
ed, community consultation is done, and training is
maintained, such efforts will be valuable. These meas-
ures represent important positive advances, but a great
deal depends how they are implemented

As securing a protected area becomes a primary con-
cern, local communities may be negatively impacted by
this militant protection of forests (Adams, 2019;
Sandbrook et al., 2018). While the aforementioned secu-
rity system serves a range of conservation purposes, sys-
tems explicitly built to detect and punish transgressors
exacerbate the militant approach to protection and alien-
ates the communities (e.g. thermal and infrared camera
and software system to detect people crossing a national
park boundary developed by World Wide Fund for
Nature and Google). Such militarization of conservation
has been termed “War on Poaching’ or ‘Green Violence’
to legitimize the use of force on a common enemy framed
as the ‘poacher’ (Biischer & Ramutsindela, 2016; Duffy,

2014, 2016; Neumann, 2004). Such terms and
approaches may be appropriate when dealing with
well-organized international cartels (Wasser et al.,
2018), but are not appropriate when dealing with local
villagers hunting bushmeat or collecting medicinal plants
for sustainence and will lead to alienation and hamper
community cooperation. The alienation will be particu-
larly acute in situations where the forest is embedded in a
landscape with high human density, as people often
make transgressions and enter protected areas for col-
lecting small amounts of fuelwood, medicinal plants, and
other non-timber forest products that are not available
in the rest of the landscape (Naughton et al., 2011). The
lure of protecting endangered species and forests from
encroachment is an attractive feature but regardless of
the means of deployment, the number of sensors
required for it to be effective can be enormous given
the structural complexity and area of forests and
drones will be ineffective when trying to detect hunters
below the canopy of dense growth. Researchers, manag-
ers, and funders should be acutely aware of differences
between how protected areas in the savannas versus the
tropics can be made safer.

Even when sensors are deployed with the aim to mon-
itor biodiversity, the landscape of fear created by con-
servation surveillance can impact the communities
(Humle et al., 2014; Sandbrook, 2015). The ease with
which the gaze of the technology can shift from moni-
toring biodiversity to surveilling people reinforces the
unease. People living in the communities will become
involuntary objects of interest to the algorithm; being
tracked every time they come near the forest or enter it
for offenses that authorities in many countries are now
reconsidering, such as collection of medicinal plants.
Entering protected areas is typically a punishable
offense. Thus, misidentification of people or activity
can have severely negative life altering consequences. It
will also lead to people destroying sensors and poachers
are likely very good at finding sensors, like camera traps,
and knowing when researchers place sensors in the
forest. A researcher in Kibale turned camera trap
images of sensors over to authorities, leading to an
arrest, which in turn resulted in it being impossible to
use camera traps in the area as they were quickly found
and destroyed.

Conclusion

There have been some discussions about the responsible
use of sensors in conservation. However, the conversa-
tions need to broaden to encompass those who enable,
use, and are impacted by sensors and algorithms and the
context in which their use is appropriate. The dialogue
should include sensor deployments, data collection,
access and storage, social implication of data use, and
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the motivations of driving actors. The larger discourse
surrounding the digital economy are also playing out in
the field of conservation and includes many of the same
actors but to date there is little critical discussion situat-
ing smart forests in this larger ecosystem of digital econ-
omy. It is important to keep in mind that the actors who
could be involved in smart forests are presently setting
the course of future interactions. This course will influ-
ence the expenditure of millions of dollars of conserva-
tion funds, the nature of people/park interactions, and
the academic landscape of conservation science. Now is
the time to think carefully about the paths being laid
out. If conservation scientists do not play an active
role in deciding the future, the path will be determined
by tech corporations as is the case for various aspects of
the digital economy (Benkler, 2019).

It is important to keep in mind that conservation does
not simply involve the optimization to a single question
(e.g., how to deter poaching or evaluate biodiversity).
Rather it involves complex trade-offs and evaluation of
cascading impacts that are highly context dependent.
Different settings will require different technologies
and approaches. Key characteristics of the setting will
include the type of poacher (e.g., international cartels,
local villagers), whether the area is home to a species
with a high market value, the density of the population
outside the protected area (e.g., the Amazon with a rural
population density <2 people/km? versus the highlands
of Uganda with 200+ people/km?), and the nature of the
habitat (forest versus savanna). Complex questions need
to be asked, such as: Who will bear the cost of imple-
mentation? What is the timescale for benefits to accrue?
Who will bear the cost of project continuation and
infrastructure maintenance over decades? Should conser-
vation dollars be invested in high-tech solutions or low-
tech approaches that invest in local communities and
hopefully builds good will? How will communities’ per-
spective of the protected area and researchers be impact-
ed by high-tech solutions? What are the opportunities
for capacity and infrastructure building? What kind of
questions will scientists want to answer?

Conservation science has a tradition of seizing unto
new ideas branded as solutions to problems that threaten
biodiversity (Redford et al., 2013). Grabbing onto fads is
typically done without adequate testing of effectiveness
or consideration of how particular field conditions
would affect the outcome (Redford et al., 2013). Fads
are often driven by the need of institutions or researchers
to be seen as novel to secure funding. The technological
solutions found in smart forest clearly offer valuable
solutions to address some problems; however, their
broad-scale and uncritical use in many situations may
reflect fad following. With large corporations having sig-
nificant stake, feel-good stories promoted through social
media can amplify the fad, necessitating buy-in from

more participants without providing the opportunity to
evaluate context and suitability. Spectacular nature is a
commercial product and digital technology is a crucial
enabler of commercial interest. Real-time monitoring
will expand the experiential scope which can engender
more armchair support but will go hand-in-hand with
surveillance for communities thus exacerbating the
already disproportionate burden of conservation
placed on them (Adams, 2019; Biischer, 2016).

As sensor ability and their associated technology
improve, the smart forest approach runs the danger of
shifting from one technology to the next in rapid succes-
sion and at great expense. In tropical forest conserva-
tion, where funding is limited; labor costs can be low and
working with the local community is essential. A careful
evaluation of the gains that smart forests offer relative to
current conservation strategies is required before the
conservation communities join the bandwagon and
accept the panacea that corporations are offering. Big
data tends to “focus on the future more than on the
present and the past” (Lyon, 2014), it is important that
conservation science does not create its own future prob-
lems by neglecting context.
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