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Summary

� Frugivory in tropical forests is a major ecological process as most tree species rely on frugi-

vores to disperse their seeds. However, the underlying mechanisms driving frugivore–plant
networks remain understudied. Here, we evaluate the data available on the Afrotropical fru-

givory network to identify structural properties, as well as assess knowledge gaps.
� We assembled a database of frugivory interactions from the literature with > 10 000 links,

between 807 tree and 285 frugivore species. We analysed the network structure using a block

model that groups species with similar interaction patterns and estimates interaction probabili-

ties among them. We investigated the species traits related to this grouping structure.
� This frugivory network was simplified into 14 tree and 14 frugivore blocks. The block struc-

ture depended on the sampling effort among species: Large mammals were better-studied,

while smaller frugivores were the least studied. Species traits related to frugivory were strong

predictors of the species composition of blocks and interactions among them. Fruits from lar-

ger trees were consumed by most frugivores, and large frugivores had higher probabilities to

consume larger fruits.
� To conclude, this large-scale frugivory network was mainly structured by species traits

involved in frugivory, and as expected by the distribution areas of species, while still being lim-

ited by sampling incompleteness.

Introduction

Biodiversity depends on multiple ecological interactions, and, in
the last few decades, one of the chief goals of community ecology
was to characterize the complex patterns of interactions among
species and the factors shaping them (Olesen et al., 2007; Coelho
& Rangel, 2018). Such interaction network approaches are par-
ticularly relevant to understand the responses of communities to
disturbances of anthropogenic or natural origins (e.g. Galetti
et al., 2006; Tylianakis et al., 2007).

Bipartite mutualistic interaction networks, involving beneficial
interactions between two categories of species such as plants and
seed dispersers or pollinators, share consistent patterns in their
topological structures (Bascompte & Jordano, 2007). These
mutualistic networks have been mainly studied at local or

community scale, in particular regarding the heterogeneity of
species generalism, with few species being highly connected and
most species being poorly connected (Jordano et al., 2003). From
this observation, nestedness in plant–frugivore networks was
described as the overlap in interaction among species of increas-
ing generalism (Bascompte et al., 2003; Almeida-Neto et al.,
2008). By contrast, modularity arose as a term that identified
groups of interacting species (modules) that are linked more den-
sely than with other species of the network (Olesen et al., 2007).
Both nestedness and modularity are predicted to relate to com-
munity stability (Thebault & Fontaine, 2010), and several pro-
cesses have highlighted both ecological patterns. These
nonexclusive processes include filters that constrain the possibility
of links, such as the spatial (distribution matching or distribution
overlap), temporal species matching (phenological matching),
trait-based processes (trait matching) and phylogenetic relation-
ships (V�azquez et al., 2009a,b; Gonz�alez-Varo & Traveset, 2016;*These authors contributed equally to this work.
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Araujo et al., 2018; Valdovinos, 2019). Most plant–frugivore
relationships concerned local community or subset of organisms
that restrict the interpretation of the structure of the networks.
With the increasing availability of data on species interactions,
mutualistic networks have also been studied at regional or biome
scales (e.g. de Almeida & de Mikich, 2018; Redhead et al., 2018;
Windsor et al., 2023). Such large-scale networks, based on the
aggregation of observed interactions at different sites, often
named metaweb (Maiorano et al., 2020), provide more robust
estimates of the topological descriptors of the networks (Quintero
et al., 2022). Additionally, the integration of large-scale data
allows exploring ecological and biogeographical patterns (Red-
head et al., 2018; Galiana et al., 2021) and the eco-evolutionary
processes shaping them (Windsor et al., 2023). Finally, large-
scale networks are great tools for proposing conservation priori-
ties or for restoring ecosystems (de Almeida & de Mikich, 2018;
Windsor et al., 2023).

The recent development of latent block models offers a new
perspective to understand the structure of ecological networks
(Leger et al., 2015; de Manincor et al., 2020; Bar-Hen
et al., 2022). Latent block models are parametric clustering meth-
ods that group species into blocks, according to their pattern of
interaction, with distinct blocks of the two set of nodes of the
bipartite network. Then, species in the same block of animals
probabilistically share the same interactions with species from
other blocks of plants and vice versa. Contrary to nestedness and
modularity approaches that identify a single predefined architec-
tural pattern, latent block models look for the structure that best
explains the data. Species within blocks can therefore be consid-
ered as functionally redundant as they have a similar interaction
pattern. Latent block models can not only reveal a modular or a
nested structure but also highlight structures that are more com-
plex, by allowing different numbers of blocks for each side of the
network and estimating probabilities of interaction among each
block couple (Fig. S1). The probabilities of interactions linking
blocks identify whether a block, for example of trees, maintains a
strong and/or specific relationship with a particular block of fru-
givores rather than with many blocks of frugivores. Therefore,
the identification of the functional and taxonomic characteristics
of the species within blocks appears promising to investigate (1)
the relative role of functional convergence with potential associ-
ated syndromes (Ronce & Clobert, 2012; Valenta & Nevo, 2020)
and (2) phylogenetic inertia with species sharing inherited traits
(Olesen et al., 2007).

Very few studies investigate the structure of tropical plant–fru-
givore networks (de Almeida & de Mikich, 2018), and this is par-
ticularly lacking in Afrotropical forests. These forests are
particularly affected by the global decline in large wildlife –
downsizing crisis – and plants due to the unsustainable human
extraction (Abernethy et al., 2013; Malhi et al., 2016). Afrotropi-
cal forests are some of the last remaining areas where megafauna
and megaflora persist at densities that maintain their ecological
functions (Terborgh et al., 2016; Berzaghi et al., 2018), and their
decline raises major concerns for the future functioning and resi-
lience of tropical ecosystems (Markl et al., 2012; Abernethy
et al., 2013; Beaune et al., 2013; Effiom et al., 2013; Galetti

et al., 2018). In these forests, most trees produce fleshy fruits that
depend on frugivores to disperse their seeds (Abernethy
et al., 2013; Effiom et al., 2013), while being important food
resources for the forest fauna, particularly the megafauna
(Gautier-Hion et al., 1985; Beaune et al., 2013; Bush
et al., 2020). At the continental scale, many site-scale studies on
frugivory have documented diets of African frugivores, mostly on
charismatic species (e.g. primates and elephants), but at a more
regional level, interactions remain poorly sampled. Thus, the
overall structure of tree–frugivore networks in Afrotropical forests
is largely unexplored (Dugger et al., 2019).

We know from other parts of the world that frugivory interac-
tions are mostly governed by trait matching, with the size of fruits
and seeds ingested constrained by the size of the fruit eaters (Kita-
mura et al., 2002; Forget et al., 2007; Donatti et al., 2011; Dehl-
ing et al., 2016). We also know that frugivore body mass is
related to specialization, with the biggest species tending to be
more generalist than the smaller ones, as they are able to ingest
both small and large fruits and seeds (Trolliet et al., 2019; God-
�ınez-Alvarez et al., 2020). These large-bodied species increase net-
work cohesion and thereby network stability (Vidal et al., 2014).
Investigating such patterns related to body, fruit and seed size in
Afrotropical forest frugivory networks is thus a priority to iden-
tify, understand and mitigate the consequences of the downsizing
crisis in these forests.

Recently, de Almeida & de Mikich (2018) proposed an
approach of concatenating local information to assemble a global
network so that structural properties could be ascertained. Their
approach, which advanced the understanding of ecological pro-
cesses of network structure in Neotropical communities, inspired
our study on Afrotropical frugivory networks. Here, we assemble
and analyse a database aggregating the current knowledge on
tree–frugivore interactions in Afrotropical forests. We quantify
the database’s sampling completeness and then analyse the struc-
ture of the corresponding interaction network using a latent
block model. We investigated the relationships between the block
structure of the network and species taxonomy, geographic distri-
bution, trait and conservation status as well as sampling effort.
More specifically, we answered two main questions: (1) What are
the determinants of the species composition of blocks? In other
words, do species from the same block share particular character-
istics? (2) What are the determinants of the probability of interac-
tions of tree and frugivore blocks? In other words, are block
couples with high probability of interaction made of species with
matching characteristics? Our analysis first indicates that the sam-
pling of frugivory interactions in Afrotropical forests is still far
from complete and that this affects the structure that our analysis
highlights. Second, we found that despite this sampling effect,
the blocks we identified species grouped together with similar
traits rather than similar taxonomy and distribution. Third, we
found that the probability of interactions among blocks was
related to expected trait and distribution matching among spe-
cies. In addition, to provide an overview of current knowledge on
frugivory interaction in Afrotropical forests, our study brings evi-
dence of the relevance of block models to relate network structure
to ecological processes at regional scales. Unlike most studies on
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mutualistic networks, which tend to have local scale focus (e.g.
Donatti et al., 2011; Schleuning et al., 2011; Carreira et al.,
2020), the results from our study provide important conceptual
ideas on network structure at large spatial scales, here on the
broader Afrotropical forests.

Materials and Methods

Study sites and database

We assembled a tree–frugivore interaction dataset from literature
by searching both the Web of Science and Google Scholar. The
search terms used were frugivor*, seed dispers*, tree-frugivore
interaction, and the genus or guild name of tree and vertebrate
species that inhabit Afrotropical forests. We selected literature
sources presenting data on endozoochory and synzoochory with
trees, palms or shrubs taller than 3 m (hereafter tree).

A total of 256 literature sources were selected (Appendix A),
listing 10 547 interactions – one interaction being the consump-
tion of the fruit of a given tree species by a given vertebrate spe-
cies. This involved 807 tree and 285 frugivore species and
included forests across Africa (Fig. 1). We focused our study on
the 6022 unique interactions, that is an interaction between one
species of tree and one frugivore species. We removed duplicates
to avoid the redundancy and bias towards certain interactions.

In addition to species’ identity, we included their order, fam-
ily, geographic distribution and conservation status. Distribu-
tional data were obtained from the African Plant Database of the
Geneva Botanical Garden for trees, and for frugivores, these data

were derived from IUCN (https://www.iucnredlist.org). Follow-
ing Droissart et al. (2018), we considered three biogeographical
regions as categorical variables: West Africa (W), Central Africa
(C) and Albertine Rift montane (East Africa, E). Each species
was assigned to one category: W, C, E, WC, WE, CE or A
(whole geographical area). For conservation status, we used the
species status given in the IUCN Red List of Threatened Species
(2020) considering species with a critically endangered, endan-
gered, vulnerable or near-threatened status as ‘threatened’ and
species with a least concern status as ‘not threatened’.

We derived species traits of trees and frugivores from the dif-
ferent literature sources (Appendix A). For frugivores, we
recorded body mass (g). For trees, we recorded fruit and seed
dimensions (length and width in cm), number of seeds per fruit,
average height (m) and wood density (g cm�3). Tree height and
wood density reveal aspects of life strategy of trees, which impact
their relationships with frugivores. For example, pioneer species
have often low wood densities. The wood density values for each
tree species were obtained in R (R Core Team, 2021) with the
function getWoodDensity from the BIOMASS package (R�ejou-
M�echain et al., 2017) using data from Chave et al. (2009).

Sampling completeness of the tree–frugivore interactions

To assess the sampling completeness of the dataset, we used accu-
mulation curves for both species and interactions, examining the
difference between the estimated richness calculated by the non-
parametric estimator Chao 2, that is the asymptote of the accu-
mulation curve, and the observed richness (Costa et al., 2016).

Fig. 1 (a) Location and contribution of the
different study sites included in the database.
Circles represent study sites, with their size
being proportional to the number of species
studied and their colour related to the
number of studies per site. The green areas
show forest cover > 30%. (b) Proportion of
unique interactions involving the different
frugivore groups included in the database, in
clockwise order starting with ruminants, birds
(large and small), carnivores, pigs, bats,
primates (apes and monkeys), elephant and
rodents. (c) Proportion of unique interactions
involving the different tree orders included in
the database (only orders involved in > 0.5%
of unique interactions are presented).
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We estimated the expected richness of tree and frugivore species
using the full dataset of 10 547 interactions on the overall
Afrotropical region and the three biogeographical regions sepa-
rately. We considered one interaction record between a plant spe-
cies and an animal species registered per site within each study.
Similarly, we estimated the expected number of interactions per
frugivore taxonomic group as in Fig. 1b, comparing it to the
number of interactions included in our database. The expected
Chao 2 estimator values were obtained with the specpool function
from VEGAN package in R (R Core Team, 2021; Chao
et al., 2009).

Network structure: block model analysis

We used a latent block model to analyse the structure of the pres-
ence–absence interaction matrix between tree and frugivore spe-
cies. This parametric method, based on regression models and
latent variables, uses statistical inference to assign species with
similar interaction patterns into groups called blocks and esti-
mates probabilities of interaction among blocks. The number of
blocks, the probabilities for species to belong to each block and
the probabilities of species interaction between block couples are
estimated by maximizing the integrated complete-data likelihood
(Newman, 2016). This allows one to highlight network structure
in a very flexible way, without predefining a structure beforehand,
except the existence of blocks. We used the BLOCKMODELS R pack-
age (Leger, 2016) adapted for bipartite networks, with the Ber-
noulli family to match our binary adjacency matrix.

Relative contribution of sampling effort, species distribution
area, traits and taxonomy to the block structure of the
frugivory network

Several nonexclusive factors could originate the block structure
or, in other words, could make pattern of interaction similar
within groups of species. Among those, species could have a simi-
lar pattern of interaction because they share (1) the same distribu-
tion area and thereby the same pool of potential partners, or (2)
traits involved in the choice of similar interacting partners due to
a common evolutionary history. In addition, the sampling effort
for each species might also affect the block structure of the net-
work, for example species with low sampling effort having very
few interactions being grouped in the same block, while species
with high sampling effort having many interactions being
grouped in other blocks.

To evaluate the relative contribution of these factors to the
block structure of the network, despite the correlations among
them, we performed a random forest model as implemented in
the R package RANDOMFOREST (Liaw & Wiener, 2002). This
classification method relies on building decision trees from
bootstrap samples (Fox et al., 2017) that allow one to incorpo-
rate categorical (taxonomy and distribution area) as well as
continuous variables (species traits), and support possible inter-
actions and collinearity among variables, as expected in our
case among species traits and taxonomy (De & Fabricius, 2000;
Loh, 2014). We quantified the variable importance by using

the mean decrease in Gini index that measures how each vari-
able contributes to the homogeneity of the classification result-
ing from a random forest model. For each variable, the mean
decrease in Gini index is the average aggregative values of Gini
index over all decision trees (Fox et al., 2017). Higher the
mean decrease in Gini index values, higher the importance of
the variable.

We fitted one random forest classification model for frugivore
blocks and another one for tree blocks. For frugivores, we
included the effects of the body mass (log-transformed), the taxo-
nomic group and the distribution area of species, as well as the
number of publications in the database to account for sampling
effort. For trees, we had pairs of highly correlated trait variables,
such as fruit length and width or seed length and width. For these
cases, we selected the trait with the highest variable importance in
determining the blocks, that is fruit length and seed length. We
further added tree height, wood density and seed number as well
as the taxonomic order, its distribution area and the number of
publications. For tree and frugivore models, we used the seven
geographic categories described previously as descriptors of distri-
bution area.

In a second step, to visualize potential differences in tree
traits among blocks, we ran a principal component analysis
(PCA) (FACTOMINER; Husson et al., 2018). The variables used
in the PCA were the seed length, seed width, fruit length, fruit
width, tree size, number of seeds per fruit and wood density.
The first dimension explained 38.26% of the variation and had
a positive loading with the fruit size – width and length – and
seed size – width and length – components. Dimension 2
explained 24.67% of the variance and had a positive loading
with the number of seeds and a negative loading with wood
density; it differentiated species with numerous seeds and low
wood density from species with few seeds and high wood den-
sity. Dimension 3 explained 12.89% of the variation and had
a positive loading with tree size.

Determinants of the summed-interaction-probability of
blocks and average species traits

We used the summed-interaction-probability of blocks as the
sum of the probabilities of interaction with other blocks esti-
mated by the latent block model. A high summed-interaction-
probability indicates strong interactions with many blocks it
interacts with.

To investigate the relationships between block summed-
interaction-probability and the average trait values of the species
within blocks, we used a generalized linear model with a negative
binomial family distribution. We included the summed-
interaction-probability of blocks as the dependent variable and
the average trait values of the species within blocks, as well as the
number of publications that include species from the blocks, as
covariates. The average trait values were average body mass (log-
transformed) for frugivore blocks, and the average species coordi-
nate from the PCA as described previously using dimensions 1–3
(Fig. S2). We selected the best models (Table S1), using the
MUMIN package (Barton, 2019).
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Determinants of the probability of interaction between
block couples

The probability of interaction between species from one frugivore
block and one tree block might be related to the overlap in distri-
bution areas between the species belonging to this block couple
(distribution matching). Similarly, this probability might also be
affected by the match in the mean trait value of the species in
each block (trait matching). We quantified the proportion of
‘species couples’ having some overlap in their distribution area as
the number of tree–animal species couples with overlapping dis-
tribution areas over the total number of possible species pairs
between the two blocks. We performed a linear mixed-model
regression, with the probability of interaction between tree and
frugivore blocks (logit transformed) as the dependent variable
and with (a) the average body mass (log-transformed) per frugi-
vore block, (b) the mean coordinate of the first dimension of the
PCA, (c) the mean coordinate of the second dimension of
the PCA, (d) the mean coordinate of the third dimension of the
PCA, (e) the proportion of species with overlapping distribution
areas, as well as (f) the mean number of studies by tree block and
(g) the mean number of studies by frugivore blocks. We imple-
mented interactions between (a) and (b), (a) and (c), (a) and (d).
We included tree and frugivore block identity as random factors,
to account for pseudo-replication. We selected the best model
(Table S2), using the MUMIN package (Barton, 2019).

Results

Sampling completeness of the dataset

The sampling completeness for species richness reached 72% for
frugivore species and 73% for tree species. Concerning the rich-
ness of interactions, our dataset only reached a sampling com-
pleteness of 42% (Fig. S3). The sampling completeness for
interaction richness did not differ when considering the biogeo-
graphical region separately: 43% for Western Africa, 42% for
Central Africa and 42% for Eastern Africa.

The sampling completeness of interactions by frugivore groups
ranged from 3% to 66%, with elephants having the highest sam-
pling completeness, followed by primates, bats, ruminants and
birds with intermediate values, and pigs, carnivores and rodents
having the lowest values (Table 1).

Structure of the tree–frugivore network: blocks and
interaction probability

The latent block model found the best block combination with
14 tree blocks and 14 frugivore blocks (Fig. 2). Most species were
attributed with high certainty to their respective blocks, with
95% of frugivores and tree species having a probability higher
than 0.8 of belonging to their block (Fig. S4).

The number of species within each block was highly variable.
In particular, one block of frugivores and one block of trees,
respectively named F14 and T14, encompassed a much higher
number of species than the others: respectively, 105 and 427

species or 37% and 55% of the total number of species. The
remaining 13 frugivore and tree blocks contained four to 33 spe-
cies (mean = 14.6) and 12–84 species (mean = 40) respectively.

The probabilities of interactions between species of frugivore
and tree blocks estimated by the latent block model were typically
low (Fig. S5). Only 11% of the interactions had a probability
> 0.5, while 63% had a probability lower than 0.1 (Fig. 2). The
richest blocks F14 and T14 had probabilities of interactions
< 0.1 with any other block, except for the interactions between
T14 and F2 that reached 0.15 (Fig. 2). The average number of
bibliographic sources per species and per block was 39.36 for tree
blocks and 109.57 for frugivore blocks; this number was minimal
for blocks T14 and F14, with on average 2.70 and 3.07 biblio-
graphic sources per species respectively. The low probabilities of
blocks T14 and F14 interacting with the other blocks were likely
due to a lack of information regarding the interactions of their
respective species.

Determinants of the species composition of tree and
frugivore blocks

For both tree and frugivore blocks, the random forest model that
best predicted the assignation of tree and frugivore species to
their block included all traits, taxonomy, distribution area and
sampling effort variables. These models had a 58% and 56%
accuracy respectively for tree and frugivore blocks, indicating that
nearly 60% of species were correctly assigned to their block with
this set of predictors. To investigate the contribution of the pre-
dictor, we looked at the variable importance with the mean
decrease in Gini index that quantifies how much the performance
of the classification relies on the different variables included in
the model (Fig. 3). For frugivores, the predictors with the highest
importance were the body mass of the species, followed by the
sampling effort, and subsequently by the distribution area and
the frugivore taxonomic groups (Fig. 3a). For tree blocks, the
pattern was different, with the sampling effort on tree species

Table 1 Sampling completeness of interaction richness for frugivore
groups.

Number
of species

Number of
observed
interactions

Estimated total
number of
interactions � SE

Sampling
completeness
(%)

Rodents 21 199 6578.2� 3794.9 3 [1–4]
Carnivores 4 27 182.7� 127.1 15 [9–49]
Pigs 2 9 44.9 � 25.4 20 [13–46]
Birds 141 2151 6354.5� 318.2 34 [32–36]
Ruminants 13 421 931.5� 81.2 45 [42–49]
Bats 20 341 734.0� 72.3 46 [42–51]
Primates 48 2767 5604.6� 192.1 49 [48–51]
Elephant 1 209 315.5� 28.9 66 [61–73]

The number of observed interactions corresponds to the number of unique
interactions in our database. The estimated total number of interactions
corresponds to the asymptotic values calculated by the Chao 2 estimator,
with standard error (�SE). The sampling completeness represents the
proportion of observed interactions over the estimation; the completeness
range is presented in brackets.
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having the highest variable importance by far, followed by a set
of four tree traits including fruit and seed sizes and by taxonomic
order, distribution area and seed number (Fig. 3b).

We further illustrated the relatively high variable importance
of fruit and seed size using a PCA (Figs 4, S6). Six blocks tended
to have distinct trait values: blocks T2, T3, T4, T7, T10 and
T11. Blocks T2 and T3 had, on average, larger seeds and fruits,
and also larger trees than most of the other blocks. Blocks T4,
T7, T10 and T11 had, on average, smaller fruits and seeds, but
while T7 was composed of smaller trees, T4 and T11 had larger
trees (Figs 4, S6). Blocks T1, T4, T5 and T6 had, on average, lar-
ger trees. The second dimension of the PCA, driven by the num-
ber of seeds and wood density, did not strongly discriminate the
various blocks (Fig. S6).

Despite a rather low variable importance of taxonomy for both
tree and frugivore blocks, there was some taxonomic clustering
within blocks, with some blocks presenting a high proportion of
one or two taxonomic groups of trees or frugivores (Fig. 2). For
frugivore blocks, blocks F1, F2, F3, F6 and F9 were mostly com-
posed of primates, blocks F4, F7, F8, F11, F12 and F14 were
mostly composed of birds, and blocks F5 and F13 were mostly
composed of ruminants and rodents, whereas block F10 was

mostly composed of bats and primates (Fig. 2). For tree blocks,
block T1 was mostly composed of Magnoliales, whereas blocks
T4 and T6 had the highest proportion of Rosales trees (Fig. 2).

Similarly, some blocks tended to group species according to
their distribution areas (Fig. 2). For frugivore blocks, blocks F1,
F2, F5 and F6 had a high proportion of species from Central
Africa. Block F3 had a high proportion of species from East
Africa, with blocks F11 and F12 that also had species widespread
in all three regions. Blocks F9 and F10 were mostly composed of
species from West Africa. Blocks F7, F8 and F14 had a high pro-
portion of species widespread across all three regions (Fig. 2).
Trees with wide distributions covering all three regions were pre-
sent in all blocks in high proportion. In blocks T3 and T8, a high
proportion of species were from central Africa, with some species
also present in Central and West Africa. Blocks T10 and T11
had a high proportion of species from East Africa (Fig. 2).

Determinants of the summed-interaction-probability of
blocks

The summed-interaction-probability of blocks, measured as the
sum of the probabilities that species from a block have to interact

Fig. 2 Bipartite network between tree blocks
(left) and frugivores blocks (right). Blocks are
ordered by decreasing the sum of
probabilities (see the Materials and Methods
section). The probability of interactions
between blocks or probability of a species
from a block interacting with a species from
the other block is represented by grey to
black lines whose thickness is proportional to
the interaction probability. The pie charts
represent the composition in terms of
taxonomic orders and distribution area in
each block, with the size of the circles
varying according to the number of species
assigned to the block (log-transformed). For
biogeographic regions (C, central Africa; E,
eastern Africa; W, western Africa), the blocks
represented by asterisk had an over-
representation of globally threatened species,
shown by a significant chi-squared test
(v2 = 68.72, df = 12, P < 0.001).
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with species from all other blocks, was for frugivores only related
to the mean number of publications per species (P = 0.002;
Table S3; Fig. 5a), and not to the mean body mass of frugivores
(Table S3). For tree blocks, we found that block summed-
interaction-probability was positively related to the third dimen-
sion of the PCA, related to tree size (P = 0.002; Table S3;
Fig. 5b), but the other dimensions, as well as the number of pub-
lications by species, had no significant effect (Table S3).

Determinants of the probability of interaction between
block couples

We found that the probability of interaction between tree and
frugivore block couples was related to the statistical interaction
between the mean value of dimension 1 of the PCA – represent-
ing the size of fruits and seeds of trees – over the species of the
tree block and the mean body mass of the species of the frugivore
block (Table S4). This indicated that while the probability to
interact with small fruits and seeds was not affected by the mean
body mass of the frugivore blocks, the probability to interact with
larger fruit and seed increased with the mean body mass of the
frugivore blocks (Figs 6a, S7). We also found a negative

relationship between the probability of interactions between
block couples and the statistical interaction between the mean
value of dimension 3 of the PCA over the species of the tree block
and the mean body mass of the species of frugivore blocks. This
indicated that small trees had a higher probability of interactions
with larger frugivores, while large trees had similar probability of
interactions with small and large frugivores (Fig. 6b). As
expected, the higher the mean distribution overlap was among
the species between block couples, the higher the probability for
them to interact was (Table S4). The mean number of studies per
species and per block of trees and frugivores was also positively
related to the probability of interactions between block couples,
suggesting that blocks with frequently studied species had a
higher probability of interactions with each other. We also found
a significant positive relationship with the mean body mass of
frugivore blocks, suggesting that blocks containing large frugi-
vores had higher probabilities of interactions with tree blocks
(Fig. S8). We found a negative relationship with dimensions 1
and 2 of the PCA on tree traits and a positive relationship with
dimension 3 (Fig. S8). This indicates that blocks containing trees
with smaller seeds and fruits – dimension 1 – had higher proba-
bility of interactions with frugivore blocks, as well as blocks with

Fig. 4 Representation of the tree species
through the first and third axes of the
principal component analysis on tree traits,
regarding their blocks. The first axis
(dimension 1) is positively related to the size
of fruits and seeds, with large fruits and seeds
having positive values. The third axis
(dimension 3) differentiates small and large
trees, with large trees having positive values
(see Fig. S2). The ellipses are confidence
ellipses representing the mean value of the
block around the barycentre. Blocks are
represented by different colours.

Fig. 3 Results of random forest models
illustrating the relative importance of
different model variables (measured by the
mean decrease in Gini index) in predicting
the assignment of species to their blocks. The
greater the mean decrease in Gini index, the
more the associated variable contributes to
predicting the assignment of species in their
block. (a) Frugivores species and (b) tree
species. Nb studies, number of studies; Geo.
area, biogeographical regions.
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trees with high wood density and low number of seeds – dimen-
sion 2 – and blocks with taller tree species – dimension 3.

Overall, these results suggest that the structure of the network
depends not only on the spatial distribution of species but also
on species traits such as fruit and seed size and frugivore body
mass making the imprint of trait matching visible in the block
structure of the network.

Discussion

Here, we provide an assessment of current knowledge of fru-
givory interactions between trees and frugivores in a continent-

wide scale of Afrotropical forests. Our analysis first emphasizes
that we still have important gaps of information about frugivory
interactions in this part of the world. Second, the latent block
model approach allowed us to simplify the full network into a
limited number of frugivore and tree blocks, that is groups of
species with similar patterns of interaction. Third, we showed
that this block structure is mainly related to both sampling effects
and species traits linked to frugivory interactions. In what fol-
lows, we discuss these results in terms of the important drivers of
structure in this network, and we also address how this analysis
elucidates concerns about the ecological functioning of threat-
ened Afrotropical forests.

Fig. 6 Relationship between the probability
of interactions between tree and blocks
(logit), and mean biological traits of tree and
frugivore species. (a) How the mean seed
size and fruit size of trees (represented by
dimension 1 of the principal component
analysis (PCA)) and the mean body mass of
frugivores affect the probability of interaction
among blocks. (b) How the size of trees
(represented by dimension 3 of the PCA) and
the mean body mass of frugivores affect the
probability of interaction among blocks. Each
point represents one of the interactions
between one frugivore and one tree block.
The colour of the point indicates the mean
body mass of the frugivores, from dark blue
for large frugivores to red for small
frugivores. Blue and red lines represent fitted
values for a mean frugivore body mass of
11.71 and 3.61 respectively.

Fig. 5 Relationships between summed-
interaction-probability for frugivore (a) and
tree blocks (b) with (a) mean number of
studies by frugivore species inside frugivore
blocks and (b) mean coordinates of tree
species on dimension 3 of the principal
component analysis (PCA) related to tree
size; where each dot represent a block. The
grey shading represent the confidence
intervals.

� 2022 The Authors

New Phytologist� 2022 New Phytologist Foundation.

New Phytologist (2023) 237: 1446–1462
www.newphytologist.com

New
Phytologist Research 1453

 14698137, 2023, 4, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.18619 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [30/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



The random forest analysis revealed that an important part of
the block structure identified by the latent block model was
related to variation in sampling effort among species. This was
particularly evident for one block of frugivores and one block of
trees that grouped together species that were poorly represented
in the publications evaluated in this study. These two blocks are
therefore more related to the absence of data rather than to the
actual structure of the network. Importantly, these two blocks
were the ones including the highest number of species, highlight-
ing that we still miss data on the interactions of many species to
fully uncover the structure of Afrotropical frugivory network
(Gonz�alez-Varo & Traveset, 2016). The sampling completeness
of our dataset was indeed moderate and varied substantially
among vertebrate groups, with large frugivores reaching higher
sampling completeness. However, even for primates, a very well-
studied group, only half of the interactions were known. There
are comparatively little data on small birds, bats, rodents and car-
nivores, although they can contribute significantly to frugivory
and seed dispersal (Seltzer et al., 2013; Carreira et al., 2020; God-
�ınez-Alvarez et al., 2020). To gain a deeper understanding of
these networks, the bias towards large vertebrates should be com-
pensated by additional sampling on lesser-known species and by
tree-centred studies with systematic day and night observations of
fruit eaters.

Species traits, in particular those related to frugivory interac-
tions, such as frugivore body mass or seed and fruit length for
trees also had high importance in the composition of blocks that
was expected from long-term studies on frugivory interactions
mostly outside Afrotropical forests (Gautier-Hion et al., 1985;
Donatti et al., 2011; Bender et al., 2018; Ong et al., 2022). The
structure highlighted by the latent block model further stresses
the functional aspects of frugivory, making this approach very rel-
evant to study networks of ecological interactions (Bar-Hen
et al., 2022). Interestingly, the variable importance of such traits
was higher than the ones of taxonomic groups or distribution
areas. This suggests first that, despite known phylogenetic signal
in frugivory interactions (Gautier-Hion et al., 1985; Donatti
et al., 2011), these traits might not be fully conserved and that
some convergences might be present. It is also possible that these
traits contain more information on frugivory interactions than
the taxonomic levels we used in our analysis. Finally, our analyses
of frugivory interactions indicate that, despite the large area cov-
ered by our data, the species composition of the blocks we identi-
fied was more related to species traits than an imprint of the
spatial distribution of species.

For frugivores, the mean body mass differed among blocks,
and while it seems positively related to block summed-
interaction-probability, the literature bias towards large frugivore
species involved in this pattern did not allow us to confirm what
was shown in previous studies (Donatti et al., 2011). For trees,
their height as well as fruit and seed length differed among
blocks, but tree height only was positively related to block
summed-interaction-probability. The absence of relationships
between block summed-interaction-probability and fruit or seed
length was unexpected as a negative relationship was found in
Asian forests (Kitamura et al., 2002). The increase in block

summed-interaction-probability with tree height indicated that
tall trees were consumed by most frugivore species, which also fit
with previous findings showing that some frugivores, like birds
and bats, prefer taller trees (Duncan & Chapman, 1999), a trait
often associated with late-successional canopy species that pri-
marily interact with generalist species (Schleuning et al., 2011).

In evaluating the probability of interactions among blocks, we
found that they were related to the overlap in the distribution
area of species between block couples. This was expected as spe-
cies with nonoverlapping distributions cannot interact and our
network data covered an area greater than the distribution area of
most species. We also found that the match in the functional
traits of species between block couples had great importance,
with large-bodied frugivores interacting with a large spectrum of
fruits and seed size and yet being the main disperser of large-
seeded fruits. Such relationships between network structure and
trait compatibility between frugivores and fruits and seeds of trees
had already been highlighted in the forests of Gabon (Gautier-
Hion et al., 1985), for African primates and hornbills (Poulsen
et al., 2001, 2002) and in other tropical forests (Donatti
et al., 2011; Hawes & Peres, 2014); all these examples are com-
patible with a nested structure (Balcomb & Chapman, 2003;
Vidal et al., 2013).

Functional redundancy for frugivory interactions, an impor-
tant concept in plant–animal interactions, could further be inter-
preted by the blocks identified by the latent block model. As
species within blocks share similar patterns of interactions, blocks
grouping many species may be considered as having a high
redundancy. Trees inside blocks share similar frugivores, while
frugivores of the same blocks feed on similar tree species. There-
fore, the loss of one tree or frugivore species inside a block may
have its ecological role substituted by another species in the
block. However, our analysis does not account for variation in
dispersal effectiveness among frugivores, which would be neces-
sary to understand whether redundancy of species within blocks
is actually realistic (Calvi~no-Cancela & Mart�ın-Herrero, 2009;
Gonz�alez-Castro et al., 2015, 2022). By contrast, blocks with few
species and therefore low redundancy, or blocks grouping many
globally threatened species might require particular conservation
attention. This may be the case for four frugivore blocks (F2, F5,
F9 and F10) with a high proportion of large species: apes, rumi-
nants or monkeys that are threatened (Osuri et al., 2020). The
loss of entire blocks could lead to the weakening of the network,
and this could happen even before extinctions occur (Valiente-
Banuet et al., 2015). In Afrotropical forests where large species
are rapidly declining, due to hunting and logging, negative conse-
quences on seed dispersal and thereby tree recruitment have been
predicted and already shown by several studies (e.g. Vanthomme
et al., 2010; Abernethy et al., 2013; Beaune et al., 2013; Effiom
et al., 2013). Implications of their loss for Afrotropical forests are
profound, even with an uneven sampling of frugivory interac-
tions.

Our study exemplifies the relevance of latent block model to
study the structure of ecological networks, showing the imprint
of ecological processes on the revealed block structure despite
the incompleteness of the data. The processes we highlighted
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were mainly related to the species traits involved in frugivory,
as well as to overlap in distribution areas that could be expected
given the spatial scale of our study. However, the full under-
standing of the structure of the network and associated pro-
cesses is still limited by sampling incompleteness. Information
on the role the different frugivores play in seed dispersal, partic-
ularly of poorly studied groups such as small birds, bats,
rodents and carnivores, is also needed to improve our under-
standing of changes that will result from defaunation and defor-
estation and, at the same time, improve future conservation
strategies.
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